As engineered electromagnetic covers based on (space-) time modulated metamaterials and metasurfaces, Doppler cloaks are able to compensate the Doppler effect induced by the motion of a scatterer, making it appear as if it were at rest to a detecting radar system. Perfect Doppler compensation can be theoretically always achieved for any relative velocity and motion direction of the cloaked scatterer with respect to the detecting system. However, the motion can be still detected from the cross section variation of the Doppler cloaked scatterer, especially under oblique incidence illumination. The challenge is, therefore, to have a proper Doppler compensation and maintain the amount of scattered energy toward the detection system as much constant as possible with respect to the illumination angle. In this Letter, we propose the design of self-adaptive retro-reflective planar Doppler cloak composed of a pair of space-time modulated metasurfaces: the first metasurface focuses the incident field in a specific location on the second metasurface, which is designed for enabling retro-reflection and Doppler frequency shift compensation. Here, the self-adaptive Doppler cloak is applied to a metallic planar reflector, moving toward its normal direction, and illuminated by an oblique plane wave. We demonstrate that the proposed Doppler cloak can perform frequency conversion and simultaneously maintain the radar cross section of the reflector as much stable as possible within an angular range of about 60° centered at the normal direction. The self-adaptive Doppler cloak may enhance the undetectability of cloaked moving objects.

1.
E. N. D. C.
Andrade
, “
Doppler and the Doppler effect
,”
Endeavour
18
(
69
),
14
19
(
1959
).
2.
T. P.
Gill
,
The Doppler Effect: An Introduction to the Theory of the Effect
(
Logos Press
,
Niagara Falls, NY
,
1965
).
3.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Doppler cloak restores invisibility to objects in relativistic motion
,”
Phys. Rev. B
95
,
075113
(
2017
).
4.
D.
Ramaccia
,
D.
Sounas
,
A.
Alu
,
A.
Toscano
, and
F.
Bilotti
, “
Advancements in Doppler cloak technology: Manipulation of Doppler effect and invisibility for moving objects
,” in
2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)
(
IEEE
,
2016
), pp.
295
297
.
5.
D.
Ramaccia
,
F.
Bilotti
,
A.
Toscano
,
D. L.
Sounas
, and
A.
Alù
, “
Doppler cloaking based on time-varying metamaterials: Theory and design
,” in
2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018-Proceedings
(
2019
).
6.
D.
Ramaccia
,
A.
Toscano
, and
F.
Bilotti
, “
Non-reciprocity and control of Doppler effect in antenna systems induced by active time-varying metamaterials and metasurfaces
,” in
Proceedings of European Microwave Conference in Central Europe, EuMCE
(
2019
).
7.
M.
Barbuto
,
A.
Monti
,
D.
Ramaccia
 et al, “
Electromagnetic cloaking for antennas
,” in
2017 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena, Metamaterials
(
2017
).
8.
D.
Ramaccia
,
F.
Bilotti
,
A.
Toscano
,
D. L. L.
Sounas
, and
A.
Alù
, “
Time-varying metamaterial Doppler cloak: Applications to invisibility and antennas
,” in
2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018-Proceedings
(
IEEE
,
2018
), pp.
1855
1856
.
9.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alu
,
F.
Bilotti
, and
A.
Toscano
, “
Nonreciprocity in antenna radiation induced by space-time varying metamaterial cloaks
,”
IEEE Antennas Wireless Propag. Lett.
17
(
11
),
1968
1972
(
2018
).
10.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alù
,
F.
Bilotti
, and
A.
Toscano
, “
Nonreciprocal horn antennas using angular momentum-biased metamaterial inclusions
,”
IEEE Trans. Antennas Propag.
63
(
12
),
5593
5600
(
2015
).
11.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alu
,
A.
Toscano
, and
F.
Bilotti
, “
Metasurface-based Doppler cloaks: Time-varying metasurface profile to achieve perfect frequency mixing
,” in
2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)
(
IEEE
,
2018
), pp.
331
333
.
12.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alu
,
A.
Toscano
, and
F.
Bilotti
, “
Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces
,”
IEEE Trans. Antennas Propag.
68
(
3
),
1607
(
2019
).
13.
Z.
Wu
and
A.
Grbic
, “
Serrodyne frequency translation using time-modulated metasurfaces
,”
IEEE Trans. Antennas Propag.
68
(
3
),
1599
1606
(
2020
).
14.
L.
Zhang
,
X.
Chen
,
R.
Shao
 et al, “
Breaking reciprocity with space-time-coding digital metasurfaces
,”
Adv. Mater.
31
,
1904069
(
2019
).
15.
L.
Zhang
,
X.
Chen
,
S.
Liu
 et al, “
Space-time-coding digital metasurfaces
,”
Nat. Commun.
9
(
1
),
4334
(
2018
).
16.
D.
Ramaccia
,
A.
Alu
,
A.
Toscano
, and
F.
Bilotti
, “
Doppler cloak: Concept and realistic implementation through space-time modulated metamaterials and time-modulated metasurfaces
,” in
14th European Conference on Antennas Propagation (EuCAP)
(
2020
).
17.
B.
Liu
,
H.
Giddens
,
Y.
Li
,
Y.
He
,
S.-W.
Wong
, and
Y.
Hao
, “
Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect
,”
Opt. Express
28
(
3
),
3745
(
2020
).
18.
B.
Liu
,
B.
Liu
,
Y.
He
,
S.-W.
Wong
,
Y.
Li
, and
Y.
Li
, “
Experimental demonstration of a time-domain digital-coding metasurface for a Doppler cloak
,”
Opt. Express
29
(
2
),
740
750
(
2021
).
19.
X. G.
Zhang
,
Y.
Sun
,
Q.
Yu
 et al, “
Smart Doppler cloak operating in broad band and full polarizations
,”
Adv. Mater.
33
(
17
),
2007966
(
2021
).
20.
V.
Kozlov
,
D.
Vovchuk
, and
P.
Ginzburg
, “
Broadband radar invisibility with time-dependent metasurfaces
,”
Sci. Rep.
11
(
1
),
14187
(
2021
).
21.
E. F.
Knott
,
J. F.
Shaeffer
, and
M. T.
Tuley
,
Radar Cross Section
(
SciTech Publishing
,
2004
).
22.
M. A.
Richards
,
J.
Scheer
, and
W. A.
Holm
,
Principles of Modern Radar, Volume I, Basic Principles
(
SciTech Publishing
,
2010
).
23.
V. C.
Chen
,
F.
Li
,
S. S.
Ho
, and
H.
Wechsler
, “
Micro-Doppler effect in radar: Phenomenon, model, and simulation study
,”
IEEE Trans. Aerosp. Electron. Syst.
42
(
1
),
2
21
(
2006
).
24.
D.
Lipuma
,
S.
Méric
, and
R.
Gillard
, “
RCS enhancement of flattened dihedral corner reflector using reflectarray approach
,”
Electron. Lett.
49
(
2
),
152
154
(
2013
).
25.
D.
Marjaniemi
and
R.
Beer
, “
Wavefronts and construction tolerances for a cat's-eye retroreflector
,”
Appl. Opt.
5
(
7
),
1191
1197
(
1966
).
26.
J. J.
Snyder
, “
Paraxial ray analysis of a cat's-eye retroreflector
,”
Appl. Opt.
14
(
8
),
1825
1828
(
1975
).
27.
Y.
Fu
,
J.
Li
,
Y.
Xie
 et al, “
Compact acoustic retroreflector based on a mirrored Luneburg lens
,”
Phys. Rev. Mater.
2
(
10
),
105202
(
2018
).
28.
R. A.
Bahr
,
A. O.
Adeyeye
,
S.
van Rijs
, and
M. M.
Tentzeris
, “
3D-printed omnidirectional Luneburg lens retroreflectors for low-cost mm-wave positioning
,” in
2020 IEEE International Conference on RFID
(
2020
).
29.
J. A.
Vitaz
,
A. M.
Buerkle
, and
K.
Sarabandi
, “
Tracking of metallic objects using a retro-reflective array at 26 GHz
,”
IEEE Trans. Antennas Propag.
58
(
11
),
3539
3544
(
2010
).
30.
M.
Feng
,
Y.
Li
,
J.
Zhang
 et al, “
Wide-angle flat metasurface corner reflector
,”
Appl. Phys. Lett.
113
(
14
),
143504
(
2018
).
31.
A.
Arbabi
,
E.
Arbabi
,
Y.
Horie
,
S. M.
Kamali
, and
A.
Faraon
, “
Planar metasurface retroreflector
,”
Nat. Photonics
11
(
7
),
415
420
(
2017
).
32.
G. Y.
Song
,
Q.
Cheng
,
T. J.
Cui
, and
Y.
Jing
, “
Acoustic planar surface retroreflector
,”
Phys. Rev. Mater.
2
(
6
),
065201
(
2018
).
33.
D.
Ramaccia
,
A.
Tobia
,
A.
Toscano
, and
F.
Bilotti
, “
Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth
,”
IEEE Trans. Antennas Propag.
66
(
5
),
2346
2353
(
2018
).
34.
D.
Ramaccia
,
A.
Tobia
,
A.
Toscano
, and
F.
Bilotti
, “
Antenna-based carpet device for extremely large obstacles: Experimental verification
,” in
2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018-Proceedings
(
2019
).
35.
L.
Stefanini
,
A.
Rech
,
D.
Ramaccia
 et al, “
Multibeam scanning antenna system based on beamforming metasurface for fast 5G NR initial access
,”
IEEE Access
10
,
65982
65995
(
2022
).
36.
A. A.
Fathnan
,
T. M.
Hossain
,
D.
Mahmudin
,
Y. N.
Wijayanto
, and
D. A.
Powell
, “
Characterization of broadband focusing microwave metasurfaces at oblique incidence
,”
IEEE Trans. Antennas Propag.
70
(
3
),
2023
2032
(
2022
).
37.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
 et al, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
(
6054
),
333
337
(
2011
).
38.
Q.
Lou
and
Z. N.
Chen
, “
Flat-focal-plane dual-metasurface lens for low scan loss and sidelobe level of a metalens antenna
,”
IEEE Trans. Antennas Propag.
70
,
9849
(
2022
).
39.
J.
Dai
,
L.
Yang
,
J.
Ke
 et al, “
High‐efficiency synthesizer for spatial waves based on space‐time‐coding digital metasurface
,”
Laser Photonics Rev.
14
(
6
),
1900133
(
2020
).
40.
J. Y.
Dai
,
J.
Zhao
,
Q.
Cheng
 et al, “
Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface
,”
Light: Science & Applications
7
,
90
(
2018
).
41.
J. Y.
Dai
,
J.
Yang
,
W.
Tang
 et al, “
Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface
,”
Appl. Phys. Rev.
7
(
4
),
041408
(
2020
).
42.
See https://www.comsol.com/ for “
COMSOL-Software for Multiphysics Simulation
” (last accessed October 25,
2022
).

Supplementary Material

You do not currently have access to this content.