Recently, it has been shown that temporal metamaterials based on impulsive modulations of the constitutive parameters (of duration much smaller than a characteristic electromagnetic timescale) may exhibit a nonlocal response that can be harnessed so as to perform elementary analog computing on an impinging wavepacket. These short-pulsed metamaterials can be viewed as the temporal analog of conventional (spatial) metasurfaces. Here, inspired by the analogy with cascaded metasurfaces, we leverage this concept and take it one step further, by showing that short-pulsed metamaterials can be utilized as elementary bricks for more complex computations. To this aim, we develop a simple, approximate approach to systematically model the multiple actions of time-resolved short-pulsed metamaterials. Via a number of representative examples, we illustrate the computational capabilities enabled by this approach, in terms of simple and composed operations, and validate it against a rigorous numerical solution. Our results indicate that the temporal dimension may provide new degrees of freedom and design approaches in the emerging field of computational metamaterials, in addition or as an alternative to conventional spatially variant platforms.

1.
F. R.
Morgenthaler
, “
Velocity modulation of electromagnetic waves
,”
IRE Trans. Microwave Theory Tech.
6
,
167
172
(
1958
).
2.
A. A.
Oliner
and
A.
Hessel
, “
Wave propagation in a medium with a progressive sinusoidal disturbance
,”
IRE Trans. Microwave Theory Tech.
9
,
337
343
(
1961
).
3.
L.
Felsen
and
G.
Whitman
, “
Wave propagation in time-varying media
,”
IEEE Trans. Antennas Propag.
18
,
242
253
(
1970
).
4.
R.
Fante
, “
Transmission of electromagnetic waves into time-varying media
,”
IEEE Trans. Antennas Propag.
19
,
417
424
(
1971
).
5.
N.
Engheta
, “
Metamaterials with high degrees of freedom: Space, time, and more
,”
Nanophotonics
10
,
639
642
(
2020
).
6.
C.
Caloz
and
Z.
Deck-Léger
, “
Spacetime metamaterials—Part I: General concepts
,”
IEEE Trans. Antennas Propag.
68
,
1569
1582
(
2020
).
7.
C.
Caloz
and
Z.
Deck-Léger
, “
Spacetime metamaterials—Part II: Theory and applications
,”
IEEE Trans. Antennas Propag.
68
,
1583
1598
(
2020
).
8.
V.
Pacheco-Peña
,
D. M.
Solís
, and
N.
Engheta
, “
Time-varying electromagnetic media: Opinion
,”
Opt. Mater. Express
12
,
3829
3836
(
2022
).
9.
E.
Galiffi
,
R.
Tirole
,
S.
Yin
,
H.
Li
,
S.
Vezzoli
,
P. A.
Huidobro
,
M. G.
Silveirinha
,
R.
Sapienza
,
A.
Alù
, and
J. B.
Pendry
, “
Photonics of time-varying media
,”
Adv. Photonics
4
,
014002
(
2022
).
10.
Y.
Xiao
,
D. N.
Maywar
, and
G. P.
Agrawal
, “
Reflection and transmission of electromagnetic waves at a temporal boundary
,”
Opt. Lett.
39
,
574
(
2014
).
11.
J. T.
Mendonça
,
A. M.
Martins
, and
A.
Guerreiro
, “
Temporal beam splitter and temporal interference
,”
Phys. Rev. A
68
,
043801
(
2003
).
12.
D.
Ramaccia
,
A.
Toscano
, and
F.
Bilotti
, “
Light propagation through metamaterial temporal slabs: Reflection, refraction, and special cases
,”
Opt. Lett.
45
,
5836
5839
(
2020
).
13.
V.
Pacheco-Peña
and
N.
Engheta
, “
Effective medium concept in temporal metamaterials
,”
Nanophotonics
9
,
379
391
(
2020
).
14.
P.
Huidobro
,
M.
Silveirinha
,
E.
Galiffi
, and
J.
Pendry
, “
Homogenization theory of space-time metamaterials
,”
Phys. Rev. Appl.
16
,
014044
(
2021
).
15.
C.
Rizza
,
G.
Castaldi
, and
V.
Galdi
, “
Nonlocal effects in temporal metamaterials
,”
Nanophotonics
11
,
1285
1295
(
2022
).
16.
S.
Taravati
and
G. V.
Eleftheriades
, “
Generalized space-time-periodic diffraction gratings: Theory and applications
,”
Phys. Rev. Appl.
12
,
024026
(
2019
).
17.
E.
Galiffi
,
Y.-T.
Wang
,
Z.
Lim
,
J. B.
Pendry
,
A.
Alù
, and
P. A.
Huidobro
, “
Wood anomalies and surface-wave excitation with a time grating
,”
Phys. Rev. Lett.
125
,
127403
(
2020
).
18.
J. S.
Martínez-Romero
,
O. M.
Becerra-Fuentes
, and
P.
Halevi
, “
Temporal photonic crystals with modulations of both permittivity and permeability
,”
Phys. Rev. A
93
,
063813
(
2016
).
19.
M.
Lyubarov
,
Y.
Lumer
,
A.
Dikopoltsev
,
E.
Lustig
,
Y.
Sharabi
, and
M.
Segev
, “
Amplified emission and lasing in photonic time crystals
,”
Science
377
,
425
428
(
2022
).
20.
A.
Shlivinski
and
Y.
Hadad
, “
Beyond the Bode-Fano bound: Wideband impedance matching for short pulses using temporal switching of transmission-line parameters
,”
Phys. Rev. Lett.
121
,
204301
(
2018
).
21.
V.
Pacheco-Peña
and
N.
Engheta
, “
Antireflection temporal coatings
,”
Optica
7
,
323
331
(
2020
).
22.
G.
Castaldi
,
V.
Pacheco-Peña
,
M.
Moccia
,
N.
Engheta
, and
V.
Galdi
, “
Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials
,”
Nanophotonics
10
,
3687
3699
(
2021
).
23.
E.
Galiffi
,
S.
Yin
, and
A.
Alù
, “
Tapered photonic switching
,”
Nanophotonics
11
,
3575
3581
(
2022
).
24.
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials
,”
Appl. Phys. Lett.
118
,
101901
(
2021
).
25.
C.
Rizza
,
G.
Castaldi
, and
V.
Galdi
, “
Short-pulsed metamaterials
,”
Phys. Rev. Lett.
128
,
257402
(
2022
).
26.
O.
Silbiger
and
Y.
Hadad
, “
Optimization-free approach for analog filter design through spatial and temporal soft switching of the dielectric constant
,” arXiv:2205.13365 (
2022
).
27.
G.
Castaldi
,
M.
Moccia
,
N.
Engheta
, and
V.
Galdi
, “
Herpin equivalence in temporal metamaterials
,”
Nanophotonics
11
,
4479
4488
(
2022
).
28.
Z.
Hayran
,
A.
Chen
, and
F.
Monticone
, “
Spectral causality and the scattering of waves
,”
Optica
8
,
1040
1049
(
2021
).
29.
H.
Li
,
S.
Yin
, and
A.
Alù
, “
Nonreciprocity and Faraday rotation at time interfaces
,”
Phys. Rev. Lett.
128
,
173901
(
2022
).
30.
V.
Pacheco-Peña
and
N.
Engheta
, “
Temporal equivalent of the Brewster angle
,”
Phys. Rev. B
104
,
214308
(
2021
).
31.
H.
Li
and
A.
Alù
, “
Temporal switching to extend the bandwidth of thin absorbers
,”
Optica
8
,
24
29
(
2021
).
32.
Z.
Hayran
and
F.
Monticone
, “
Challenging fundamental limitations in electromagnetics with time-varying systems
,” arXiv:2205.07142 (
2022
).
33.
Z.
Hayran
,
J. B.
Khurgin
, and
F.
Monticone
, “
ω versus k: Dispersion and energy constraints on time-varying photonic materials and time crystals
,”
Opt. Mater. Express
12
,
3904
3917
(
2022
).
34.
H.
Moussa
,
G.
Xu
,
S.
Yin
,
E.
Galiffi
,
Y.
Radi
, and
A.
Alù
, “
Observation of temporal reflections and broadband frequency translations at photonic time-interfaces
,” arXiv:2208.07236 (
2022
).
35.
X.
Wang
,
M. S.
Mirmoosa
,
V. S.
Asadchy
,
C.
Rockstuhl
,
S.
Fan
, and
S. A.
Tretyakov
, “
Metasurface-based realization of photonic time crystals
,” arXiv:2208.07231 (
2022
).
36.
T.
Liu
,
J.-Y.
Ou
,
K. F.
MacDonald
, and
N. I.
Zheludev
, “
Photonic analogue of a continuous time crystal
,” arXiv:2209.00324 (
2022
).
37.
A.
Silva
,
F.
Monticone
,
G.
Castaldi
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
Performing mathematical operations with metamaterials
,”
Science
343
,
160
163
(
2014
).
38.
F.
Zangeneh-Nejad
,
D. L.
Sounas
,
A.
Alù
, and
R.
Fleury
, “
Analogue computing with metamaterials
,”
Nat. Rev. Mater.
6
,
207
225
(
2020
).
39.
B. O.
Raeker
and
A.
Grbic
, “
Compound metaoptics for amplitude and phase control of wave fronts
,”
Phys. Rev. Lett.
122
,
113901
(
2019
).
40.
W.
Mai
,
J.
Xu
, and
D. H.
Werner
, “
Fundamental asymmetries between spatial and temporal boundaries in electromagnetics
,” arXiv:2207.04286 (
2022
).
41.
N.
Kamaraju
,
A.
Rubano
,
L.
Jian
,
S.
Saha
,
T.
Venkatesan
,
J.
Nötzold
,
R.
Kramer Campen
,
M.
Wolf
, and
T.
Kampfrath
, “
Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials
,”
Light: Sci. Appl.
3
,
e155
(
2014
).
42.
Y.
Yang
,
N.
Kamaraju
,
S.
Campione
,
S.
Liu
,
J. L.
Reno
,
M. B.
Sinclair
,
R. P.
Prasankumar
, and
I.
Brener
, “
Transient GaAs plasmonic metasurfaces at terahertz frequencies
,”
ACS Photonics
4
,
15
21
(
2017
).
You do not currently have access to this content.