For optical refrigeration to become a viable option for cryogenics, it is fundamental to improve the overall cooling power of an optical cryocooler. In this paper, we propose a design that might be able to cool down a thermal load to temperatures lower than ever before: the parallel configuration. We explore the possibility of attaching a thermal load to multiple Yb:YLF monocrystals, which would allow us to use more pump intensity without surpassing the saturation limit, and we show that by using two YLF:5% Yb crystals connected to an undoped YLF sample (that acts both as a thermal link and a thermal load) we obtained a ΔT increase in 40% compared to a setup with the load and a single crystal.

1.
P.
Pringsheim
, “
Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung [two remarks about the difference between luminescence and thermal radiation
,”
Z. Phys.
57
,
739
746
(
1929
).
2.
A.
Kastler
, “
Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments
,”
J. Phys. Radium
11
,
255
(
1950
).
3.
R. I.
Epstein
,
J. J.
Brown
,
B. C.
Edwards
, and
A.
Gibbs
, “
Measurements of optical refrigeration in ytterbium-doped crystals
,”
J. Appl. Phys.
90
,
4815
4819
(
2001
).
4.
Y.
Lei
,
B.
Zhong
,
T.
Yang
,
X.
Duan
,
M.
Xia
,
C.
Wang
,
J.
Xu
,
Z.
Zhang
,
J.
Ding
, and
J.
Yin
, “
Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K
,”
Appl. Phys. Lett.
120
,
231101
(
2022
).
5.
B.
Zhong
,
H.
Luo
,
Y.
Lei
,
Y.
Shi
, and
J.
Yin
, “
Forward to cryogenic temperature: Laser cooling of Yb:LuLiF crystal
,”
Proc. SPIE
10180
,
101800C
(
2017
).
6.
B.
Zhong
,
Y.
Lei
,
X.
Duan
,
T.
Yang
, and
J.
Yin
, “
Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit
,”
Appl. Phys. Lett.
118
,
131104
(
2021
).
7.
W. M.
Patterson
,
A.
Mocofanescu
,
M.
Sheik-Bahae
,
R. I.
Epstein
,
J.
Thiede
,
S.
Bigotta
,
D.
Parisi
,
A.
Toncelli
, and
M.
Tonelli
, “
Laser cooling in rare earth doped BaY2F8 crystals
,” in
Frontiers in Optics
(
Optica Publishing Group
,
2005
), p.
JWA78
.
8.
A.
Volpi
,
G.
Cittadino
,
A.
Di Lieto
, and
M.
Tonelli
, “
Anti-Stokes cooling of Yb-doped KYF4 single crystals
,”
J. Lumin.
203
,
670
675
(
2018
).
9.
S. D.
Melgaard
,
D. V.
Seletskiy
,
A.
Di Lieto
,
M.
Tonelli
, and
M.
Sheik-Bahae
, “
Optical refrigeration to 119K, below National Institute of Standards and Technology cryogenic temperature
,”
Opt. Lett.
38
,
1588
1590
(
2013
).
10.
S.
Melgaard
,
A.
Albrecht
,
M.
Hehlen
, and
M.
Sheik-Bahae
, “
Solid-state optical refrigeration to sub-100 Kelvin regime
,”
Sci. Rep.
6
,
20380
(
2016
).
11.
A.
Gragossian
,
M.
Ghasemkhani
,
J.
Meng
,
A. R.
Albrecht
,
M.
Tonelli
, and
M.
Sheik-Bahae
, “
Optical refrigeration inches toward liquid-nitrogen temperatures
,”
SPIE Newsroom
2017
,
2
4
.
12.
F.
Mauerhoff
,
S.
Püschel
,
C.
Kränkel
, and
H.
Tanaka
, “
Laser cooling of Yb3+-doped CaF2 and SrF2 crystals
,” in
Laser Congress 2021
(ASSL,LAC) (
Optica Publishing Group
,
2021
), p.
ATh1A.3
.
13.
A.
Di Lieto
,
A.
Sottile
,
A.
Volpi
,
Z.
Zhonghan
,
D.
Seletskiy
, and
M.
Tonelli
, “
Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals
,”
Opt. Express
22
,
28572
28583
(
2014
).
14.
A.
Volpi
,
A.
Di Lieto
, and
M.
Tonelli
, “
Novel approach for solid state cryocoolers
,”
Opt. Express
23
,
8216
8226
(
2015
).
15.
G.
Cittadino
,
E.
Damiano
,
A.
Di Lieto
, and
M.
Tonelli
, “
First demonstration of optical refrigeration efficiency greater than 4% at room temperature
,”
Opt. Express
28
,
14476
14489
(
2020
).
16.
S. R.
Bowman
, “
Lasers without internal heat generation
,”
IEEE J. Quantum Electron.
35
,
115
122
(
1999
).
17.
S. R.
Bowman
and
C. E.
Mungan
, “
New materials for optical cooling
,”
Appl. Phys. B
71
,
807
811
(
2000
).
18.
S. R.
Bowman
,
S. P.
O'Connor
, and
S.
Biswal
, “
Ytterbium laser with reduced thermal loading
,”
IEEE J. Quantum Electron.
41
,
1510
1517
(
2005
).
19.
M. P.
Hehlen
,
J.
Meng
,
A. R.
Albrecht
,
E. R.
Lee
,
A.
Gragossian
,
S. P.
Love
,
C. E.
Hamilton
,
R. I.
Epstein
, and
M.
Sheik-Bahae
, “
First demonstration of an all-solid-state optical cryocooler
,”
Light: Sci. Appl.
7
,
15
(
2018
).
20.
R.
Vicente
,
G.
Cittadino
,
A.
Di Lieto
,
M.
Tonelli
,
A.
Gardelein
, and
G.
Nogues
, “
Operation of a fiber-coupled laser cooled down to cryogenic temperatures
,”
Opt. Express
30
,
12929
12936
(
2022
).
21.
A.
Gragossian
,
J.
Meng
,
M.
Ghasemkhani
,
A. R.
Albrecht
, and
M.
Sheik-Bahae
, “
Astigmatic Herriott cell for optical refrigeration
,”
Opt. Eng.
56
,
011110
011114
(
2016
).
22.
M.
Ghasemkhani
,
A. R.
Albrecht
,
S. D.
Melgaard
,
D. V.
Seletskiy
,
J. G.
Cederberg
, and
M.
Sheik-Bahae
, “
Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs)
,”
Opt. Express
22
,
16232
16240
(
2014
).
23.
A.
Volpi
,
J.
Kock
,
A. R.
Albrecht
,
M. P.
Hehlen
,
R. I.
Epstein
, and
M.
Sheik-Bahae
, “
Open-aperture Z-scan study for absorption saturation: Accurate measurement of saturation intensity in YLF:Yb for optical refrigeration
,”
Opt. Lett.
46
,
1421
1424
(
2021
).
24.
M.
Sheik-Bahae
and
J.
Kock
, “
The role of absorption saturation and amplified spontaneous emission in cryogenic optical refrigeration
,”
Proc. SPIE
12018
,
1201803
(
2022
).
25.
D. V.
Seletskiy
,
M. P.
Hehlen
,
R. I.
Epstein
, and
M.
Sheik-Bahae
, “
Cryogenic optical refrigeration
,”
Adv. Opt. Photonics
4
,
78
107
(
2012
).
26.
See https://www.acktar.com/product/nano-black/ for Nano-Black coating by Acktar Ltd.
27.
D.
Seletskiy
,
S.
Melgaard
,
R.
Epstein
,
A.
Di Lieto
,
M.
Tonelli
, and
M.
Sheik-Bahae
, “
Precise determination of minimum achievable temperature for solid-state optical refrigeration
,”
J. Lumin.
133
,
5
9
(
2013
).
28.
F.
Caminati
,
G.
Cittadino
,
E.
Damiano
,
A.
Di Lieto
, and
M.
Tonelli
, “
Loss processes on crystal cooling efficiency
,”
Opt. Express
29
,
41313
41322
(
2021
).
You do not currently have access to this content.