Compared to traditional semiconductor control electronics (TSCE) located at room temperature, cryogenic single flux quantum (SFQ) electronics can provide qubit measurement and control alternatives that address critical issues related to scalability of cryogenic quantum processors. Single-qubit control and readout have been demonstrated recently using SFQ circuits coupled to superconducting qubits. Experiments where the SFQ electronics are co-located with the qubit have suffered from excess decoherence and loss due to quasiparticle poisoning of the qubit. A previous experiment by our group showed that moving the control electronics to the 3 K stage of the dilution refrigerator avoided this source of decoherence in a high-coherence three-dimensional transmon geometry. In this paper, we also generate the pulses at the 3 K stage but have optimized the qubit design and control lines for scalable two-dimensional transmon devices. We directly compare the qubit lifetime T 1, coherence time T 2 *, and gate fidelity when the qubit is controlled by the Josephson pulse generator (JPG) circuit vs the TSCE setup. We find agreement within the daily fluctuations for T 1 and T 2 *, and agreement within 10% for randomized benchmarking. We also performed interleaved randomized benchmarking on individual JPG gates demonstrating an average error per gate of 0.46% showing good agreement with what is expected based on the qubit coherence and higher-state leakage. These results are an order of magnitude improvement in gate fidelity over our previous work and demonstrate that a Josephson microwave source operated at 3 K is a promising component for scalable qubit control.

1.
A. G.
Fowler
,
M.
Mariantoni
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
2.
J.
Kelly
,
R.
Barends
,
A. G.
Fowler
,
A.
Megrant
,
E.
Jeffrey
,
T. C.
White
,
D.
Sank
,
J. Y.
Mutus
,
B.
Campbell
,
Y.
Chen
et al, “
State preservation by repetitive error detection in a superconducting quantum circuit
,”
Nature
519
,
66
69
(
2015
).
3.
C. K.
Andersen
,
A.
Remm
,
S.
Lazar
,
S.
Krinner
,
N.
Lacroix
,
G. J.
Norris
,
M.
Gabureac
,
C.
Eichler
, and
A.
Wallraff
, “
Repeated quantum error detection in a surface code
,”
Nat. Phys.
16
,
875
880
(
2020
).
4.
Google Quantum AI
. “
Exponential suppression of bit or phase errors with cyclic error correction
,”
Nature
595
,
383
(
2021
).
5.
J. P. G.
Van Dijk
,
B.
Patra
,
S.
Subramanian
,
X.
Xue
,
N.
Samkharadze
,
A.
Corna
,
C.
Jeon
,
F.
Sheikh
,
E.
Juarez-Hernandez
,
B. P.
Esparza
,
H.
Rampurawala
,
B. R.
Carlton
,
S.
Ravikumar
,
C.
Nieva
,
S.
Kim
et al, “
A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons
,”
IEEE J. Solid-State Circuits
55
,
2930
2946
(
2020
).
6.
J. C.
Bardin
,
E.
Jeffrey
,
E.
Lucero
,
T.
Huang
,
S.
Das
,
D. T.
Sank
,
O.
Naaman
,
A. E.
Megrant
,
R.
Barends
,
T.
White
,
M.
Giustina
,
K. J.
Satzinger
,
K.
Arya
,
P.
Roushan
,
B.
Chiaro
et al, “
Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K
,”
IEEE J. Solid-State Circuits
54
,
3043
3060
(
2019
).
7.
D. L.
Underwood
,
J. A.
Glick
,
K.
Inoue
,
D. J.
Frank
,
J.
Timmerwilke
,
E.
Pritchett
,
S.
Chakraborty
,
K.
Tien
,
M.
Yeck
,
J. F.
Bulzacchelli
,
C.
Baks
,
P.
Rosno
,
R.
Robertazzi
,
M.
Beck
,
R. V.
Joshi
,
D.
Wisnieff
,
D.
Ramirez
,
J.
Ruedinger
,
S.
Lekuch
,
B. P.
Gaucher
, and
D. J.
Friedman
, “
Using cryogenic CMOS control electronics to enable a two-qubit cross-resonance gate
,” arXiv:2302.11538 [quant-ph] (
2023
).
8.
S.
Pauka
,
K.
Das
,
R.
Kalra
,
A.
Moini
,
Y.
Yang
,
M.
Trainer
,
A.
Bousquet
,
C.
Cantaloube
,
N.
Dick
,
G.
Gardner
et al, “
A cryogenic CMOS chip for generating control signals for multiple qubits
,”
Nat. Electron.
4
,
64
70
(
2021
).
9.
A. J.
Sirois
,
M.
Castellanos-Beltran
,
A. E.
Fox
,
S. P.
Benz
, and
P. F.
Hopkins
, “
Josephson microwave sources applied to quantum information systems
,”
IEEE Trans. Quantum Eng.
1
,
6002807
(
2020
).
10.
J.
van Dijk
,
E.
Kawakami
,
R.
Schouten
,
M.
Veldhorst
,
L.
Vandersypen
,
M.
Babaie
,
E.
Charbon
, and
F.
Sebastiano
, “
Impact of classical control electronics on qubit fidelity
,”
Phys. Rev. Appl.
12
,
044054
(
2019
).
11.
H.
Ball
,
W. D.
Oliver
, and
M. J.
Biercuk
, “
The role of master clock stability in quantum information processing
,”
npj Quantum Inf.
2
,
16033
(
2016
).
12.
R.
McDermott
,
M. G.
Vavilov
,
B. L. T.
Plourde
,
F. K.
Wilhelm
,
P. J.
Liebermann
,
O. A.
Mukhanov
, and
T. A.
Ohki
, “
Quantum–classical interface based on single flux quantum digital logic
,”
Quantum Sci. Technol.
3
,
024004
(
2018
).
13.
R.
McDermott
and
M. G.
Vavilov
, “
Accurate qubit control with single flux quantum pulses
,”
Phys. Rev. Appl.
2
,
014007
(
2014
).
14.
P. J.
Liebermann
and
F. K.
Wilhelm
, “
Optimal qubit control using single-flux quantum pulses
,”
Phys. Rev. Appl.
6
,
024022
(
2016
).
15.
M.
Bastrakova
,
N.
Klenov
,
V.
Ruzhickiy
,
I.
Soloviev
, and
A.
Satanin
, “
Sub-nanosecond operations on superconducting quantum register based on Ramsey patterns
,”
Supercond. Sci. Technol.
35
,
055003
(
2022
).
16.
E.
Leonard
,
M. A.
Beck
,
J.
Nelson
,
B.
Christensen
,
T.
Thorbeck
,
C.
Howington
,
A.
Opremcak
,
I.
Pechenezhskiy
,
K.
Dodge
,
N.
Dupuis
,
M.
Hutchings
,
J.
Ku
,
F.
Schlenker
,
J.
Suttle
,
C.
Wilen
et al, “
Digital coherent control of a superconducting qubit
,”
Phys. Rev. Appl.
11
,
014009
(
2019
).
17.
U.
Patel
,
I. V.
Pechenezhskiy
,
B. L. T.
Plourde
,
M. G.
Vavilov
, and
R.
McDermott
, “
Phonon-mediated quasiparticle poisoning of superconducting microwave resonators
,”
Phys. Rev. B
96
,
220501
(
2017
).
18.
J. M.
Martinis
,
M.
Ansmann
, and
J.
Aumentado
, “
Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations
,”
Phys. Rev. Lett.
103
,
097002
(
2009
).
19.
C.-H.
Liu
,
A.
Ballard
,
D.
Olaya
,
D. R.
Schmidt
,
J.
Biesecker
,
T.
Lucas
,
J.
Ullom
,
S.
Patel
,
O.
Rafferty
,
A.
Opremcak
,
K.
Dodge
,
V.
Iaia
,
T.
McBroom
,
J. L.
Dubois
,
P. F.
Hopkins
,
S. P.
Benz
,
B. L. T.
Plourde
, and
R.
McDermott
, “
Single flux quantum-based digital control of superconducting qubits in a multi-chip module
,” arXiv:2301.05696 (
2023
).
20.
S. P.
Benz
and
C. A.
Hamilton
, “
A pulse-driven programmable Josephson voltage standard
,”
Appl. Phys. Lett.
68
,
3171
3173
(
1996
).
21.
However, as shown in Ref. 22, the effective width from our pulses generated by the overdamped junctions is expected to be significantly narrower than τ.
22.
L.
Howe
,
M. A.
Castellanos-Beltran
,
A. J.
Sirois
,
D.
Olaya
,
J.
Biesecker
,
P. D.
Dresselhaus
,
S. P.
Benz
, and
P. F.
Hopkins
, “
Digital control of a superconducting qubit using a Josephson pulse generator at 3 K
,”
PRX Quantum
3
,
010350
(
2022
).
23.
R.
Bianchetti
,
S.
Filipp
,
M.
Baur
,
J. M.
Fink
,
M.
Göppl
,
P. J.
Leek
,
L.
Steffen
,
A.
Blais
, and
A.
Wallraff
, “
Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics
,”
Phys. Rev. A
80
,
043840
(
2009
).
24.
C. A.
Donnelly
,
J. A.
Brevik
,
N. E.
Flowers-Jacobs
,
A. E.
Fox
,
P. D.
Dresselhaus
,
P. F.
Hopkins
, and
S. P.
Benz
, “
Quantized pulse propagation in Josephson junction arrays
,”
IEEE Trans. Appl. Supercond.
30
,
1
8
(
2020
).
25.
A.
Rüfenacht
,
N. E.
Flowers-Jacobs
, and
S. P.
Benz
, “
Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology
,”
Metrologia
55
,
S152
(
2018
).
26.
M.
Castellanos-Beltran
and
K.
Lehnert
, “
Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator
,”
Appl. Phys. Lett.
91
,
083509
(
2007
).
27.
T.
Van Duzer
and
C. W.
Turner
,
Principles of Superconductive Devices and Circuits
(
Prentice Hall PTR
,
1999
).
28.
M. A.
Rol
,
C. C.
Bultink
,
T. E.
O'Brien
,
S. R.
de Jong
,
L. S.
Theis
,
X.
Fu
,
F.
Luthi
,
R. F. L.
Vermeulen
,
J. C.
de Sterke
,
A.
Bruno
,
D.
Deurloo
,
R. N.
Schouten
,
F. K.
Wilhelm
, and
L.
DiCarlo
, “
Restless tuneup of high-fidelity qubit gates
,”
Phys. Rev. Appl.
7
,
041001
(
2017
).
29.
The difference arises because in the JPG case, π / 2 and π pulse trains are not the same length, while the standard for TSCE is to keep the pulse lengths the same (we used the π pulse length) and instead change amplitudes.
30.
E.
Magesan
,
J. M.
Gambetta
,
B. R.
Johnson
,
C. A.
Ryan
,
J. M.
Chow
,
S. T.
Merkel
,
M. P.
da Silva
,
G. A.
Keefe
,
M. B.
Rothwell
,
T. A.
Ohki
,
M. B.
Ketchen
, and
M.
Steffen
, “
Efficient measurement of quantum gate error by interleaved randomized benchmarking
,”
Phys. Rev. Lett.
109
,
080505
(
2012
).
31.
Z.
Chen
, “
Metrology of quantum control and measurement in superconducting qubits
,” Ph.D. thesis (
UC Santa Barbara
,
2018
).
32.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
1772
(
2012
).
33.
K.
Li
,
R.
McDermott
, and
M. G.
Vavilov
, “
Hardware-efficient qubit control with single-flux-quantum pulse sequences
,”
Phys. Rev. Appl.
12
,
014044
(
2019
).
Published by AIP Publishing.

Supplementary Material

You do not currently have access to this content.