Contributing to excellent photoelectric property, the tunable bandgap and intercorrelated in-plane and out-of-plane ferroelectric polarization simultaneously, α-In2Se3 has great potential in the applications of optoelectronic devices and photo-controlled devices, like memories, sensors, and synapses. However, little attention is paid to the in-plane anisotropic photoelectric property of α-In2Se3, which may restrict its competitiveness in application of designing and fabrication of optoelectronic devices and photo-controlled devices. Herein, multi-layered α-In2Se3 based phototransistors with eight terminals are prepared, and its in-plane anisotropic photodetection is investigated. By comparing the dark current (Idark), photocurrent (Iph), responsivity (R), external quantum efficiency (EQE), and specific detectivity (D*), in-plane anisotropic photoelectric property of multi-layered α-In2Se3 is demonstrated, and the Idark, Iph, R, EQE, and D* anisotropic ratios are up to 163.76, 480.59, 480.59, 480.59, and 58.8, respectively. The carrier mobility and the in-plane ferroelectric polarization are the two main factors determining the in-plane anisotropic photoelectric property. The excellent in-plane anisotropic photoelectric property makes α-In2Se3 a promising candidate as an in-plane anisotropic semiconductor for high-sensitivity optoelectronic and photo-controlled applications.

1.
G.
Liu
,
K.
Chen
, and
J.
Li
, “
Combustion synthesis of InSe, In2Se3, and GaSe
,”
J. Am. Chem. Soc.
101
(
1
),
36
39
(
2018
).
2.
S.
Yang
,
P.
Zhang
,
A. S.
Nia
et al, “
Emerging 2D materials produced via electrochemistry
,”
Adv. Mater.
32
(
10
),
1907857
(
2020
).
3.
Z.
Sun
and
H.
Chang
, “
Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology
,”
ACS Nano
8
(
5
),
4133
4156
(
2014
).
4.
S.
Bertolazzi
,
P.
Bondavalli
,
S.
Roche
et al, “
Nonvolatile memories based on graphene and related 2D materials
,”
Adv. Mater.
31
(
10
),
e1806663
(
2019
).
5.
G.
Wu
,
B.
Tian
,
L.
Liu
et al, “
Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains
,”
Nat. Electron.
3
(
1
),
43
50
(
2020
).
6.
T.
Jia
,
Z.
Feng
,
S.
Guo
et al, “
Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations
,”
ACS Appl. Mater. Interfaces
12
(
10
),
11852
11864
(
2020
).
7.
X.
Tang
,
J.
Shang
,
Y.
Ma
et al, “
Tuning magnetism of metal porphyrazine molecules by a ferroelectric In2Se3 monolayer
,”
ACS Appl. Mater. Interfaces
12
(
35
),
39561
39566
(
2020
).
8.
D.
Huo
,
Y.
Bai
,
X.
Lin
et al, “
Tuning of the valley structures in monolayer In2Se3/WSe2 heterostructures via ferroelectricity
,”
Nano Lett.
22
(
17
),
7261
7267
(
2022
).
9.
R.
Rojaee
and
R.
Shahbazian-Yassar
, “
Two-dimensional materials to address the lithium battery challenges
,”
ACS Nano
14
(
3
),
2628
2658
(
2020
).
10.
X.
Wang
,
P.
Wang
,
J.
Wang
et al, “
Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics
,”
Adv. Mater.
27
(
42
),
6575
6581
(
2015
).
11.
H.
Bai
,
X.
Li
,
H.
Pan
et al, “
Van der Waals antiferroelectric magnetic tunnel junction: A first-principles study of a CrSe2/CuInP2S6/CrSe2 junction
,”
ACS Appl. Mater. Interfaces
13
(
50
),
60200
60208
(
2021
).
12.
Z.
Dai
,
L.
Liu
, and
Z.
Zhang
, “
Strain engineering of 2D materials: Issues and opportunities at the interface
,”
Adv. Mater.
31
(
45
),
1805417
(
2019
).
13.
Z.
Zhang
,
Y.
Yuan
,
W.
Zhou
et al, “
Strain-induced bandgap enhancement of InSe ultrathin films with self-formed two-dimensional electron gas
,”
ACS Nano
15
(
6
),
10700
10709
(
2021
).
14.
Y.-R.
Chang
,
P.-H.
Ho
,
C.-Y.
Wen
et al, “
Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector
,”
ACS Photonics
4
(
11
),
2930
2936
(
2017
).
15.
C.-H.
Ho
,
C.-H.
Lin
,
Y.-P.
Wang
et al, “
Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates
,”
ACS Appl. Mater. Interfaces
5
(
6
),
2269
2277
(
2013
).
16.
Z.
Guan
,
H.
Hu
,
X.
Shen
et al, “
Recent progress in two‐dimensional ferroelectric materials
,”
Adv. Electron. Mater.
6
(
1
),
1900818
(
2020
).
17.
L.
Qi
,
S.
Ruan
, and
Y. J.
Zeng
, “
Review on recent developments in 2D ferroelectrics: Theories and applications
,”
Adv. Mater.
33
(
13
),
2005098
(
2021
).
18.
J.
Shang
,
X.
Tang
,
Y.
Gu
et al, “
Robust magnetoelectric effect in the decorated graphene In2Se3 heterostructure
,”
ACS Appl. Mater. Interfaces
13
(
2
),
3033
3039
(
2021
).
19.
J.
Igo
,
M.
Gabel
,
Z.-G.
Yu
et al, “
Photodefined in-plane heterostructures in two-dimensional In2Se3 nanolayers for ultrathin photodiodes
,”
ACS Appl. Nano Mater.
2
(
10
),
6774
6782
(
2019
).
20.
Q.
Qiu
and
Z.
Huang
, “
Photodetectors of 2D materials from ultraviolet to terahertz waves
,”
Adv. Mater.
33
(
15
),
2008126
(
2021
).
21.
X.
Cao
,
Y.
Xiong
,
J.
Sun
et al, “
Piezoelectric nanogenerators derived self‐powered sensors for multifunctional applications and artificial intelligence
,”
Adv. Funct. Mater.
31
(
33
),
2102983
(
2021
).
22.
Y.
Fang
,
Y.
Ge
,
C.
Wang
et al, “
Mid‐infrared photonics using 2D materials: Status and challenges
,”
Laser Photonics Rev.
14
(
1
),
1900098
(
2020
).
23.
F.
Xue
,
J.
Zhang
,
W.
Hu
et al, “
Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3
,”
ACS Nano
12
(
5
),
4976
4983
(
2018
).
24.
T.-H.
Chang
,
K.
Li
,
H.
Yang
et al, “
Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities
,”
Adv. Mater.
30
(
47
),
1802418
(
2018
).
25.
P.
Chen
,
J.
Pan
,
W.
Gao
et al, “
Anisotropic carrier mobility from 2H WSe2
,”
Adv. Mater.
34
(
7
),
2108615
(
2022
).
26.
L.
Tao
,
S.
Li
,
B.
Yao
et al, “
Raman anisotropy and polarization-sensitive photodetection in 2D Bi2O2Se–WSe2 heterostructure
,”
ACS Omega
6
(
50
),
34763
34770
(
2021
).
27.
G.
Han
,
Z. G.
Chen
,
J.
Drennan
et al, “
Indium selenides: Structural characteristics, synthesis and their thermoelectric performances
,”
Small
10
(
14
),
2747
2765
(
2014
).
28.
C.
Zheng
,
L.
Yu
,
L.
Zhu
et al, “
Room temperature in-plane ferroelectricity in van der Waals In2Se3
,”
Sci. Adv.
4
(
7
),
eaar7720
(
2018
).
29.
C.
Cui
,
W. J.
Hu
,
X.
Yan
et al, “
Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3
,”
Nano Lett.
18
(
2
),
1253
1258
(
2018
).
30.
R. B.
Jacobs-Gedrim
,
M.
Shanmugam
,
N.
Jain
et al, “
Extraordinary photoresponse in two-dimensional In2Se3 nanosheets
,”
ACS Nano
8
(
1
),
514
521
(
2014
).
31.
F.
Xue
,
X.
He
,
J. R. D.
Retamal
et al, “
Gate‐tunable and multidirection‐switchable memristive phenomena in a van der Waals ferroelectric
,”
Adv. Mater.
31
(
29
),
1901300
(
2019
).
32.
T. A.
Shifa
,
F.
Wang
,
Y.
Liu
et al, “
Heterostructures based on 2D materials: A versatile platform for efficient catalysis
,”
Adv. Mater.
31
(
45
),
1804828
(
2019
).
33.
R.
Vilaplana
,
S. G.
Parra
,
A.
Jorge-Montero
et al, “
Experimental and theoretical studies on α-In2Se3 at high pressure
,”
Inorg. Chem.
57
(
14
),
8241
8252
(
2018
).
34.
B.
Liu
,
F.
Lyu
,
B.
Tang
et al, “
Contact properties of two-dimensional ferroelectric α-In2Se3
,”
ACS Appl. Electron. Mater.
3
(
10
),
4604
4610
(
2021
).
35.
M.
Lin
,
D.
Wu
,
Y.
Zhou
et al, “
Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy
,”
J. Am. Chem. Soc.
135
(
36
),
13274
13277
(
2013
).
36.
M.
Si
,
Z.
Zhang
,
S.-C.
Chang
et al, “
Asymmetric metal/α-In2Se3/Si crossbar ferroelectric semiconductor junction
,”
ACS Nano
15
(
3
),
5689
5695
(
2021
).
37.
C.
Gong
,
K.
Hu
,
X.
Wang
et al, “
2D nanomaterial arrays for electronics and optoelectronics
,”
Adv. Funct. Mater.
28
(
16
),
1706559
(
2018
).
38.
M.
Malitckaya
,
T.
Kunze
,
H.-P.
Komsa
et al, “
Alkali postdeposition treatment-induced changes of the chemical and electronic structure of Cu(In,Ga)Se2 thin-film solar cell absorbers: A first-principle perspective
,”
ACS Appl. Mater. Interfaces
11
(
3
),
3024
3033
(
2019
).
39.
C.
Tang
,
L.
Zhang
,
D.
Wijethunge
et al, “
Controllable polarization and doping in ferroelectric In2Se3 monolayers and heterobilayers via intrinsic defect engineering
,”
J. Phys. Chem. C
125
(
44
),
24648
24654
(
2021
).
40.
H.
Su
,
T.
Hu
,
F.
Wu
et al, “
Controllable vdW contacts between the ferroelectric In2Se3 monolayer and two-dimensional metals
,”
J. Phys. Chem. C
125
(
19
),
10738
10746
(
2021
).
41.
J.
Zhou
,
Q.
Zeng
,
D.
Lv
et al, “
Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition
,”
Nano Lett.
15
(
10
),
6400
6405
(
2015
).
42.
Z.
Wang
,
Z.
Hao
,
Y.
Yu
et al, “
Fermi velocity reduction of Dirac fermions around the Brillouin zone center in In2Se3–bilayer graphene heterostructures
,”
Adv. Mater.
33
(
17
),
2007503
(
2021
).
43.
P.
Wang
,
Y.
Wang
,
L.
Ye
et al, “
Ferroelectric localized field-enhanced ZnO nanosheet ultraviolet photodetector with high sensitivity and low dark current
,”
Small
14
(
22
),
1800492
(
2018
).
44.
Y.
Xu
,
C.
Liu
,
C.
Guo
et al, “
High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction
,”
Nano Energy
70
,
104518
(
2020
).
45.
L.
Jin
,
Y.
Wu
,
H.
Zhang
, and
Y.
Wang
, “
In‐situ synthesis of the thinnest In2Se3/In2S3/In2Se3 sandwich–like heterojunction for photoelectrocatalytic water splitting
,”
Chem. Eur. J.
28
(
14
),
e202104428
(
2022
).
46.
S.
Wan
,
Y.
Li
,
W.
Li
et al, “
Nonvolatile ferroelectric memory effect in ultrathin α‐In2Se3
,”
Adv. Funct. Mater.
29
(
20
),
1808606
(
2019
).
You do not currently have access to this content.