Chiral light-matter interactions supported by topological edge modes at the interface of valley photonic crystals provide a robust method to implement the unidirectional spin transfer. The valley topological photonic crystals possess a pair of counterpropagating edge modes. The edge modes are robust against the sharp bend of 60 ° and 120 °, which can form a resonator with whispering gallery modes. Here, we demonstrate the asymmetric emission of chiral coupling from single quantum dots in a topological resonator by tuning the coupling between a quantum emitter and a resonator mode. Under a magnetic field in Faraday configuration, the exciton state from a single quantum dot splits into two exciton spin states with opposite circularly polarized emissions due to the Zeeman effect. Two branches of the quantum dot emissions couple to a resonator mode in different degrees, resulting in an asymmetric chiral emission. Without the demanding of site-control of quantum emitters for chiral quantum optics, an extra degree of freedom to tune the chiral contrast with a topological resonator could be useful for the development of on-chip integrated photonic circuits.

1.
P.
Lodahl
,
S.
Mahmoodian
, and
S.
Stobbe
, “
Interfacing single photons and single quantum dots with photonic nanostructures
,”
Rev. Mod. Phys.
87
,
347
400
(
2015
).
2.
A.
Reiserer
and
G.
Rempe
, “
Cavity-based quantum networks with single atoms and optical photons
,”
Rev. Mod. Phys.
87
,
1379
1418
(
2015
).
3.
C. P.
Dietrich
,
A.
Fiore
,
M. G.
Thompson
,
M.
Kamp
, and
S.
Hofling
, “
GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits
,”
Laser Photonics Rev.
10
,
870
894
(
2016
).
4.
P.
Lodahl
,
S.
Mahmoodian
,
S.
Stobbe
,
A.
Rauschenbeutel
,
P.
Schneeweiss
,
J.
Volz
,
H.
Pichler
, and
P.
Zoller
, “
Chiral quantum optics
,”
Nature
541
,
473
480
(
2017
).
5.
Y.
Arakawa
and
M. J.
Holmes
, “
Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview
,”
Appl. Phys. Rev.
7
,
021309
(
2020
).
6.
K. Y.
Bliokh
and
F.
Nori
, “
Transverse and longitudinal angular momenta of light
,”
Phys. Rep.
592
,
1
38
(
2015
).
7.
A.
Aiello
,
P.
Banzer
,
M.
Neugebauer
, and
G.
Leuchs
, “
From transverse angular momentum to photonic wheels
,”
Nat. Photonics
9
,
789
795
(
2015
).
8.
B.
Lang
,
D. P.
McCutcheon
,
E.
Harbord
,
A. B.
Young
, and
R.
Oulton
, “
Perfect chirality with imperfect polarization
,”
Phys. Rev. Lett.
128
,
073602
(
2022
).
9.
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Nori
, and
A. V.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
10.
J.
Petersen
,
J.
Volz
, and
A.
Rauschenbeutel
, “
Chiral nanophotonic waveguide interface based on spin-orbit interaction of light
,”
Science
346
,
67
71
(
2014
).
11.
R.
Mitsch
,
C.
Sayrin
,
B.
Albrecht
,
P.
Schneeweiss
, and
A.
Rauschenbeutel
, “
Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide
,”
Nat. Commun.
5
,
5713
(
2014
).
12.
C.
Sayrin
,
C.
Junge
,
R.
Mitsch
,
B.
Albrecht
,
D.
O'Shea
,
P.
Schneeweiss
,
J.
Volz
, and
A.
Rauschenbeutel
, “
Nanophotonic optical isolator controlled by the internal state of cold atoms
,”
Phys. Rev. X
5
,
041036
(
2015
).
13.
R.
Coles
,
D.
Price
,
J.
Dixon
,
B.
Royall
,
E.
Clarke
,
P.
Kok
,
M.
Skolnick
,
A.
Fox
, and
M.
Makhonin
, “
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
,”
Nat. Commun.
7
,
11183
(
2016
).
14.
R. J.
Coles
,
D. M.
Price
,
B.
Royall
,
E.
Clarke
,
M. S.
Skolnick
,
A. M.
Fox
, and
M.
Makhonin
, “
Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide
,”
Phys. Rev. B
95
,
121401
(
2017
).
15.
I.
Luxmoore
,
N. A.
Wasley
,
A. J.
Ramsay
,
A.
Thijssen
,
R.
Oulton
,
M.
Hugues
,
A.
Fox
, and
M.
Skolnick
, “
Optical control of the emission direction of a quantum dot
,”
Appl. Phys. Lett.
103
,
241102
(
2013
).
16.
I.
Luxmoore
,
N.
Wasley
,
A.
Ramsay
,
A.
Thijssen
,
R.
Oulton
,
M.
Hugues
,
S.
Kasture
,
V.
Achanta
,
A.
Fox
, and
M.
Skolnick
, “
Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons
,”
Phys. Rev. Lett.
110
,
037402
(
2013
).
17.
A.
Javadi
,
D.
Ding
,
M. H.
Appel
,
S.
Mahmoodian
,
M. C.
Löbl
,
I.
Söllner
,
R.
Schott
,
C.
Papon
,
T.
Pregnolato
,
S.
Stobbe
et al, “
Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide
,”
Nat. Nanotechnol.
13
,
398
403
(
2018
).
18.
S.
Xiao
,
S.
Wu
,
X.
Xie
,
J.
Yang
,
W.
Wei
,
S.
Shi
,
F.
Song
,
S.
Sun
,
J.
Dang
,
L.
Yang
et al, “
Position-dependent chiral coupling between single quantum dots and cross waveguides
,”
Appl. Phys. Lett.
118
,
091106
(
2021
).
19.
S.
Xiao
,
S.
Wu
,
X.
Xie
,
J.
Yang
,
W.
Wei
,
S.
Shi
,
F.
Song
,
J.
Dang
,
S.
Sun
,
L.
Yang
et al, “
Chiral photonic circuits for deterministic spin transfer
,”
Laser Photonics Rev.
15
,
2100009
(
2021
).
20.
I.
Söllner
,
S.
Mahmoodian
,
S. L.
Hansen
,
L.
Midolo
,
A.
Javadi
,
G.
Kiršanskė
,
T.
Pregnolato
,
H.
El-Ella
,
E. H.
Lee
,
J. D.
Song
et al, “
Deterministic photon–emitter coupling in chiral photonic circuits
,”
Nat. Nanotechnol.
10
,
775
778
(
2015
).
21.
A. B.
Young
,
A.
Thijssen
,
D. M.
Beggs
,
P.
Androvitsaneas
,
L.
Kuipers
,
J. G.
Rarity
,
S.
Hughes
, and
R.
Oulton
, “
Polarization engineering in photonic crystal waveguides for spin-photon entanglers
,”
Phys. Rev. Lett.
115
,
153901
(
2015
).
22.
S.
Mahmoodian
,
P.
Lodahl
, and
A. S.
Sørensen
, “
Quantum networks with chiral-light–matter interaction in waveguides
,”
Phys. Rev. Lett.
117
,
240501
(
2016
).
23.
S.
Iwamoto
,
Y.
Ota
, and
Y.
Arakawa
, “
Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform
,”
Opt. Mater. Express
11
,
319
337
(
2021
).
24.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
et al, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
25.
X.
He
,
E.
Liang
,
J.
Yuan
,
H.
Qiu
,
X.
Chen
,
F.
Zhao
, and
J.
Dong
, “
A silicon-on-insulator slab for topological valley transport
,”
Nat. Commun.
10
,
872
(
2019
).
26.
M. I.
Shalaev
,
W.
Walasik
,
A.
Tsukernik
,
Y.
Xu
, and
N. M.
Litchinitser
, “
Robust topologically protected transport in photonic crystals at telecommunication wavelengths
,”
Nat. Nanotechnol.
14
,
31
34
(
2019
).
27.
H.
Yoshimi
,
T.
Yamaguchi
,
R.
Katsumi
,
Y.
Ota
,
Y.
Arakawa
, and
S.
Iwamoto
, “
Experimental demonstration of topological slow light waveguides in valley photonic crystals
,”
Opt. Express
29
,
13441
13450
(
2021
).
28.
H.
Yoshimi
,
T.
Yamaguchi
,
Y.
Ota
,
Y.
Arakawa
, and
S.
Iwamoto
, “
Slow light waveguides in topological valley photonic crystals
,”
Opt. Lett.
45
,
2648
2651
(
2020
).
29.
S.
Barik
,
A.
Karasahin
,
C.
Flower
,
T.
Cai
,
H.
Miyake
,
W.
DeGottardi
,
M.
Hafezi
, and
E.
Waks
, “
A topological quantum optics interface
,”
Science
359
,
666
668
(
2018
).
30.
S.
Barik
,
H.
Miyake
,
W.
DeGottardi
,
E.
Waks
, and
M.
Hafezi
, “
Two-dimensionally confined topological edge states in photonic crystals
,”
New J. Phys.
18
,
113013
(
2016
).
31.
N.
Parappurath
,
F.
Alpeggiani
,
L.
Kuipers
, and
E.
Verhagen
, “
Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing
,”
Sci. Adv.
6
,
eaaw4137
(
2020
).
32.
M. J.
Mehrabad
,
A. P.
Foster
,
R.
Dost
,
E.
Clarke
,
P. K.
Patil
,
A. M.
Fox
,
M. S.
Skolnick
, and
L. R.
Wilson
, “
Chiral topological photonics with an embedded quantum emitter
,”
Optica
7
,
1690
1696
(
2020
).
33.
M. J.
Mehrabad
,
A.
Foster
,
R.
Dost
,
E.
Clarke
,
P.
Patil
,
I.
Farrer
,
J.
Heffernan
,
M.
Skolnick
, and
L.
Wilson
, “
A semiconductor topological photonic ring resonator
,”
Appl. Phys. Lett.
116
,
061102
(
2020
).
34.
Y.
Yang
and
Z. H.
Hang
, “
Topological whispering gallery modes in two-dimensional photonic crystal cavities
,”
Opt. Express
26
,
21235
21241
(
2018
).
35.
J.
Ma
,
X.
Xi
, and
X.
Sun
, “
Topological photonic integrated circuits based on valley kink states
,”
Laser Photonics Rev.
13
,
1900087
(
2019
).
36.
S.
Barik
,
A.
Karasahin
,
S.
Mittal
,
E.
Waks
, and
M.
Hafezi
, “
Chiral quantum optics using a topological resonator
,”
Phys. Rev. B
101
,
205303
(
2020
).
37.
X.
Xie
,
S.
Yan
,
J.
Dang
,
J.
Yang
,
S.
Xiao
,
Y.
Wang
,
S.
Shi
,
L.
Yang
,
D.
Dai
,
Y.
Yuan
et al, “
Topological cavity based on slow-light topological edge mode for broadband Purcell enhancement
,”
Phys. Rev. Appl.
16
,
014036
(
2021
).
38.
H.
Pichler
,
T.
Ramos
,
A. J.
Daley
, and
P.
Zoller
, “
Quantum optics of chiral spin networks
,”
Phys. Rev. A
91
,
042116
(
2015
).
39.
A.
Kuther
,
M.
Bayer
,
A.
Forchel
,
A.
Gorbunov
,
V.
Timofeev
,
F.
Schäfer
, and
J.
Reithmaier
, “
Zeeman splitting of excitons and biexcitons in single In 0.60 Ga 0.40 As / GaAs self-assembled quantum dots
,”
Phys. Rev. B
58
,
R7508
(
1998
).
40.
S.
Wu
,
K.
Peng
,
X.
Xie
,
J.
Yang
,
S.
Xiao
,
F.
Song
,
J.
Dang
,
S.
Sun
,
L.
Yang
,
Y.
Wang
,
S.
Shi
,
J.
He
,
Z.
Zuo
, and
X.
Xu
, “
Electron and hole g tensors of neutral and charged excitons in single quantum dots by high-resolution photocurrent spectroscopy
,”
Phys. Rev. Appl.
14
,
014049
(
2020
).
41.
K.
Peng
,
S.
Wu
,
J.
Tang
,
F.
Song
,
C.
Qian
,
S.
Sun
,
S.
Xiao
,
M.
Wang
,
H.
Ali
,
D. A.
Williams
, and
X.
Xu
, “
Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field
,”
Phys. Rev. Appl.
8
,
064018
(
2017
).
42.
M.
Bayer
,
G.
Ortner
,
O.
Stern
,
A.
Kuther
,
A.
Gorbunov
,
A.
Forchel
,
P.
Hawrylak
,
S.
Fafard
,
K.
Hinzer
,
T.
Reinecke
et al, “
Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots
,”
Phys. Rev. B
65
,
195315
(
2002
).
43.
H.
Kim
,
T. C.
Shen
,
D.
Sridharan
,
G. S.
Solomon
, and
E.
Waks
, “
Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity
,”
Appl. Phys. Lett.
98
,
091102
(
2011
).
You do not currently have access to this content.