In this Letter, an ultraviolet photodetector constructed on a simple vertical PEDOT:PSS/SiC hybrid heterojunction with superior self-powered performance was reported. Benefitting from the abundant charge carrier concentration in 4H-SiC substrate and the large built-in field at PEDOT:PSS/SiC heterointerface, the SiC based photodetector (PD) realized self-powered responsivity over A/W level, even comparable with many reported 4H-SiC avalanche photodiodes. Upon illumination with deep-UV wavelength at 254 nm, the responsivity, detectivity, and external quantum efficiency of the fabricated PD reached up to 2.15 A/W, 1.9 × 1013 Jones, and 1053%, respectively. Furthermore, the rise/decay time was as fast as 58.6/41.5 ms, the on–off switching ratio was as large as 8.73 × 103, the spectral rejection ratio (R254/R390) was as high as 4.3 × 103, and the lifetime reliability was over 195 days. Serving as a sensing pixel, the designed heterojunction PD demonstrated excellent imaging capability in homemade UV imaging system, showing promising applications in future energy-conservation photoelectronic system.

1.
H.
Chen
,
K.
Liu
,
L.
Hu
,
A. A.
Al-Ghamdi
, and
X.
Fang
,
Mater. Today
18
(
9
),
493
(
2015
).
2.
E.
Monroy
,
F.
Omnes
, and
F.
Calle
,
Semicond. Sci. Technol.
18
(
4
),
R33
(
2003
).
3.
C.
Zhou
,
Q.
Ai
,
X.
Chen
,
X.
Gao
,
K.
Liu
, and
D.
Shen
,
Chin. Phys. B
28
(
4
),
048503
(
2019
).
4.
L.
Han
,
L.
Liang
,
Y.
Kang
, and
Y.
Qiu
,
IEEE Trans. Power Electron.
36
(
2
),
2080
(
2021
).
5.
X.
She
,
A. Q.
Huang
,
L.
Oscar
, and
B.
Ozpineci
,
IEEE Trans. Ind. Electron.
64
(
10
),
8193
(
2017
).
6.
R.
Devanathan
and
W. J.
Weber
,
J. Nucl. Mater.
278
(
2
),
258
(
2000
).
7.
R.
Dahal
,
T. M. A.
Tahtamouni
,
Z. Y.
Fan
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
90
(
26
),
263505
(
2007
).
8.
G.
Lioliou
,
M. C.
Mazzillo
,
A.
Sciuto
, and
A. M.
Barnett
,
Opt. Express
23
(
17
),
21657
(
2015
).
9.
J.
Huang
,
L.-W.
Guo
,
W.
Lu
,
Y.-H.
Zhang
,
Z.
Shi
,
Y.-P.
Jia
,
Z.-L.
Li
,
J.-W.
Yang
,
H.-X.
Chen
,
Z.-X.
Mei
, and
X.-L.
Chen
,
Chin. Phys. B
25
(
6
),
067205
(
2016
).
10.
J.
Yu
,
L.
Dong
,
B.
Peng
,
L.
Yuan
,
Y.
Huang
,
L.
Zhang
,
Y.
Zhang
, and
R.
Jia
,
J. Alloys Compd.
821
,
153532
(
2020
).
11.
M. A.
Yildirim
and
K.
Teker
,
J. Alloys Compd.
868
,
159255
(
2021
).
12.
S. K.
Chaudhuri
,
R.
Nag
, and
K. C.
Mandal
,
IEEE Electron Device Lett.
44
(
5
),
733
(
2023
).
13.
Y.
Peng
,
J.
Lu
,
X.
Wang
,
W.
Ma
,
M.
Que
,
Q.
Chen
,
F.
Li
,
X.
Liu
,
W.
Gao
, and
C.
Pan
,
Nano Energy
94
,
106945
(
2022
).
14.
Y.
Xu
,
X.
Chen
,
Y.
Zhang
,
F.
Ren
,
S.
Gu
, and
J.
Ye
,
IEEE Electron Device Lett.
41
(
7
),
997
(
2020
).
15.
H.
Shi
,
C.
Liu
,
Q.
Jiang
, and
J.
Xu
,
Adv. Electron. Mater.
1
(
4
),
1500017
(
2015
).
16.
D.-W.
Byun
,
Y.-J.
Lee
,
J.-M.
Oh
,
M. A.
Schweitz
, and
S.-M.
Koo
,
Electron. Mater. Lett.
17
(
6
),
479
(
2021
).
17.
S.
Li
,
Z.
Yan
,
Z.
Liu
,
J.
Chen
,
Y.
Zhi
,
D.
Guo
,
P.
Li
,
Z.
Wu
, and
W.
Tang
,
J. Mater. Chem. C
8
(
4
),
1292
(
2020
).
18.
S.
Li
,
D.
Guo
,
P.
Li
,
X.
Wang
,
Y.
Wang
,
Z.
Yan
,
Z.
Liu
,
Y.
Zhi
,
Y.
Huang
,
Z.
Wu
, and
W.
Tang
,
ACS Appl. Mater. Interfaces
11
(
38
),
35105
(
2019
).
19.
S.
Li
,
J.
Yue
,
C.
Lu
,
Z.
Yan
,
Z.
Liu
,
P.
Li
,
D.
Guo
,
Z.
Wu
,
Y.
Guo
, and
W.
Tang
,
Sci. China Technol. Sci.
65
(
3
),
704
(
2022
).
20.
R.
Weingärtner
,
P. J.
Wellmann
,
M.
Bickermann
,
D.
Hofmann
,
T. L.
Straubinger
, and
A.
Winnacker
,
Appl. Phys. Lett.
80
(
1
),
70
(
2002
).
21.
H.
Kan
,
W.
Zheng
,
C.
Fu
,
R.
Lin
,
J.
Luo
, and
F.
Huang
,
ACS Appl. Mater. Interfaces
12
(
5
),
6030
(
2020
).
22.
N.
Liu
,
G.
Fang
,
W.
Zeng
,
H.
Zhou
,
F.
Cheng
,
Q.
Zheng
,
L.
Yuan
,
X.
Zou
, and
X.
Zhao
,
ACS Appl. Mater. Interfaces
2
(
7
),
1973
(
2010
).
23.
S.
Oh
,
Y.
Jung
,
M. A.
Mastro
,
J. K.
Hite
,
C. R.
Eddy
, Jr.
, and
J.
Kim
,
Opt. Express
23
(
22
),
28300
(
2015
).
24.
L. J. A.
Koster
,
V. D.
Mihailetchi
,
H.
Xie
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
87
(
20
),
203502
(
2005
).
25.
A. K. K.
Kyaw
,
D. H.
Wang
,
V.
Gupta
,
W. L.
Leong
,
L.
Ke
,
G. C.
Bazan
, and
A. J.
Heeger
,
ACS Nano
7
(
5
),
4569
(
2013
).
26.
M. M.
Mandoc
,
F. B.
Kooistra
,
J. C.
Hummelen
,
B. D.
Boer
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
91
(
26
),
263505
(
2007
).
27.
J.
Vollbrecht
,
V. V.
Brus
,
S.-J.
Ko
,
J.
Lee
,
A.
Karki
,
D. X.
Cao
,
K.
Cho
,
G. C.
Bazan
, and
T.-Q.
Nguyen
,
Adv. Energy Mater.
9
(
32
),
1901438
(
2019
).
28.
W. L.
Leong
,
S. R.
Cowan
, and
A. J.
Heeger
,
Adv. Energy Mater.
1
(
4
),
517
(
2011
).
29.
S.
Ryu
,
N. Y.
Ha
,
Y. H.
Ahn
,
J. Y.
Park
, and
S.
Lee
,
Sci. Rep.
11
(
1
),
16781
(
2021
).
30.
J.
Vollbrecht
and
V. V.
Brus
,
Organic Electron.
86
,
105905
(
2020
).
31.
S.
Li
,
Y.
Zhi
,
C.
Lu
,
C.
Wu
,
Z.
Yan
,
Z.
Liu
,
J.
Yang
,
X.
Chu
,
D.
Guo
,
P.
Li
,
Z.
Wu
, and
W.
Tang
,
J. Phys. Chem. Lett.
12
(
1
),
447
(
2021
).
32.
S.
Li
,
J.
Yue
,
X.
Ji
,
C.
Lu
,
Z.
Yan
,
P.
Li
,
D.
Guo
,
Z.
Wu
, and
W.
Tang
,
J. Mater. Chem. C
9
(
16
),
5437
(
2021
).
33.
S.
Li
,
J. Y.
Yue
,
C.
Wu
,
Z.
Liu
,
Z. Y.
Yan
,
P. G.
Li
,
D. Y.
Guo
,
Z. P.
Wu
,
Y. F.
Guo
, and
W. H.
Tang
,
IEEE Sens. J.
21
(
23
),
26724
(
2021
).
34.
S.
Li
,
Z. Y.
Yan
,
J. C.
Tang
,
J. Y.
Yue
,
Z.
Liu
,
P. G.
Li
,
Y. F.
Guo
, and
W. H.
Tang
,
IEEE Trans. Electron Devices
69
(
5
),
2443
(
2022
).
35.
Z.
Fu
,
M.
Zhang
,
S.
Han
,
J.
Cai
,
R.
Hong
,
X.
Chen
,
D.
Lin
,
S.
Wu
,
Y.
Zhang
,
D.
Fu
,
Z.
Wu
,
B.
Zhang
,
F.
Zhang
, and
R.
Zhang
,
IEEE Electron Device Lett.
43
(
1
),
64
(
2022
).
36.
X.
Zhou
,
X.
Tan
,
Y.
Lv
,
Y.
Wang
,
J.
Li
,
T.
Han
,
H.
Guo
,
S.
Liang
,
Z. H.
Zhang
,
Z.
Feng
, and
S.
Cai
,
IEEE Electron Device Lett.
40
(
10
),
1591
(
2019
).
37.
X.
Zhou
,
T.
Han
,
Y.
Lv
,
J.
Li
,
W.
Lu
,
Y.
Wang
,
X.
Song
,
X.
Tan
,
S.
Liang
,
Z.
Feng
, and
S.
Cai
,
IEEE Electron Device Lett.
39
(
11
),
1724
(
2018
).
38.
X.
Zhou
,
X.
Tan
,
Y.
Lv
,
Y.
Wang
,
Z.
Feng
, and
S.
Cai
,
IEEE Trans. Electron Devices
67
(
8
),
3250
(
2020
).
39.
H.
Wang
,
H.
Chen
,
L.
Li
,
Y.
Wang
,
L.
Su
,
W.
Bian
,
B.
Li
, and
X.
Fang
,
J. Phys. Chem. Lett.
10
(
21
),
6850
(
2019
).
40.
D.
Guo
,
Y.
Su
,
H.
Shi
,
P.
Li
,
N.
Zhao
,
J.
Ye
,
S.
Wang
,
A.
Liu
,
Z.
Chen
,
C.
Li
, and
W.
Tang
,
ACS Nano
12
,
12827
(
2018
).
41.
H.
Chen
,
P.
Yu
,
Z.
Zhang
,
F.
Teng
,
L.
Zheng
,
K.
Hu
, and
X.
Fang
,
Small
12
(
42
),
5809
(
2016
).
42.
R.
Zhuo
,
Y.
Wang
,
D.
Wu
,
Z.
Lou
,
Z.
Shi
,
T.
Xu
,
J.
Xu
,
Y.
Tian
, and
X.
Li
,
J. Mater. Chem. C
6
(
2
),
299
(
2018
).
43.
H.-Y.
Chen
,
K.-W.
Liu
,
X.
Chen
,
Z.-Z.
Zhang
,
M.-M.
Fan
,
M.-M.
Jiang
,
X.-H.
Xie
,
H.-F.
Zhao
, and
D.-Z.
Shen
,
J. Mater. Chem. C
2
(
45
),
9689
(
2014
).
44.
H.
Zhu
,
X.
Chen
,
J.
Cai
, and
Z.
Wu
,
Solid-State Electron.
53
(
1
),
7
(
2009
).
45.
J.
Yu
,
Z.
Nie
,
L.
Dong
,
L.
Yuan
,
D.
Li
,
Y.
Huang
,
L.
Zhang
,
Y.
Zhang
, and
R.
Jia
,
J. Alloys Compd.
798
,
458
(
2019
).
46.
Y.-J.
Lee
,
M. A.
Schweitz
,
J.-M.
Oh
, and
S.-M.
Koo
,
Materials
13
(
2
),
434
(
2020
).
47.
C.
Jia
,
X.
Huang
,
D.
Wu
,
Y.
Tian
,
J.
Guo
,
Z.
Zhao
,
Z.
Shi
,
Y.
Tian
,
J.
Jie
, and
X.
Li
,
Nanoscale
12
(
7
),
4435
(
2020
).

Supplementary Material

You do not currently have access to this content.