Advanced LIGO and Advanced Virgo have detected gravitational waves from astronomical sources to open a new window on the Universe. To explore this new realm requires an exquisite level of detector sensitivity, meaning that the much stronger signal from instrumental and environmental noise must be rejected. Selected examples of unwanted noise in Advanced LIGO are presented. The initial focus is on how the existence of this noise (characterized by particular frequencies or time intervals) was discovered. Then, a variety of methods are used to track down the source of the noise, e.g., a fault within the instruments or coupling from an external source. The ultimate goal of this effort is to mitigate the noise by either fixing equipment or by augmenting methods to suppress the coupling to the environment.

1.
J.
Aasi
,
B. P.
Abbott
,
R.
Abbott
,
LIGO Scientific Collaboration
et al, “
Advanced LIGO
,”
Class. Quantum Gravity
32
,
074001
(
2015
).
2.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
et al, “
Observation of gravitational waves from a binary black Hole Merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
3.
F.
Acernese
,
M.
Agathos
,
K.
Agatsuma
et al, “
Advanced Virgo: A second-generation interferometric gravitational wave detector
,”
Class. Quantum Gravity
32
,
024001
(
2015
).
4.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
,
LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL
et al, “
Gravitational waves and gamma-rays from a binary neutron star Merger: GW170817 and GRB 170817A
,”
Astrophys. J. Lett.
848
,
L13
(
2017
).
5.
A.
Buikema
,
C.
Cahillane
,
G. L.
Mansell
et al, “
Sensitivity and performance of the Advanced LIGO detectors in the third observing run
,”
Phys. Rev. D
102
,
062003
(
2020
).
6.
D.
Davis
,
J. S.
Areeeda
,
B. K.
Berger
et al, “
LIGO detector characterization in the second and third observing runs
,”
Classical Quantum Gravity
38
,
135014
(
2021
).
7.
L. K.
Nuttall
, “
Characterizing transient noise in the LIGO detectors
,”
Philos. Trans. R. Soc. A
376
,
20170286
(
2018
).
8.
B. K.
Berger
and
LIGO Scientific Collaboration
, “
Identification and mitigation of Advanced LIGO noise sources
,”
J. Phys. Conf. Ser.
957
,
012004
(
2018
).
9.
S.
Soni
,
C.
Austin
,
A.
Effler
,
LIGO
et al, “
Reducing scattered light in LIGO's third observing run
,”
Classical Quantum Gravity
38
,
025016
(
2021
).
10.
P.
Nguyen
,
R. M. S.
Schofield
,
A.
Effler
et al,“
Environmental noise in Advanced LIGO detectors
,”
Classical Quantum Gravity
38
,
145001
(
2021
).
11.
F.
Acernese
,
M.
Agathos
,
A.
Ain
et al, “
Virgo detector characterization and data quality: Results from the O3 run
,” arXiv:2210.15633 (
2022
).
12.
I.
Fiori
,
F.
Paoletti
,
M. C.
Tringali
et al, “
The hunt for environmental noise in Virgo during the third observing run
,”
Galaxies
8
,
82
(
2020
).
13.
R.
Abbott
,
T. D.
Abbott
,
F.
Acernese
et al, “
GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run
,” arXiv:2111.03606 2021.
14.
R.
Abbott
,
T. D.
Abbott
,
F.
Acernese
,
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration
et al, “
All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
,”
Phys. Rev. D
104
,
102001
(
2021
).
15.
R.
Abbott
,
T. D.
Abbott
,
S.
Abraham
,
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration
et al, “
All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data
,”
Phys. Rev. D
104
,
082004
(
2021
).
16.
R.
Abbott
,
T. D.
Abbott
,
F.
Acernese
,
LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration
et al, “
All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs
,”
Phys. Rev. D
105
,
122001
(
2022
).
17.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
,
LIGO Scientific Collaboration, and Virgo Collaboration
et al, “
A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals
,”
Classical Quantum Gravity
37
,
055002
(
2020
).
18.
N. J.
Cornish
and
T. B.
Littenberg
, “
BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches
,”
Classical Quantum Gravity
32
,
135012
(
2015
).
19.
A. L.
Urban
,
D.
Macleod
,
S.
Anderson
, and
J.
Baryoga
, “LIGO DetChar Summary Pages,” available online at https://summary.ligo.org.
20.
See https://gwosc.org/detector_status/ for “
GWOSC Summary Pages
.”
21.
R.
Abbott
,
T. D.
Abbott
,
S.
Abraham
et al, “
Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo
,”
SoftwareX
13
,
100658
(
2021
).
22.
D.
Macleod
,
A. L.
Urban
,
S.
Coughlin
,
T.
Massinger
,
M.
Pitkin
,
R.
George
,
P.
Altin
,
J.
Areeda
,
L.
Singer
,
E.
Quintero
, and
K.
Leinweber
, see gwpy/gwpy: 2.0.1 for information about this software package (
2020
).
23.
J. S.
Areeda
,
J. R.
Smith
,
A. P.
Lundgren
,
E.
Maros
,
D. M.
Macleod
, and
J.
Zweizig
, “
LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO Scientific Collaboration
,”
Astron. Comput.
18
,
27
34
(
2017
).
24.
A.
Lundgren
,
T.
Dent
,
J.
Smith
,
V.
Sandberg
, and
J.
Kissel
, “aLIGO LHO Logbook 32503 LIGO Laboratory” (2016). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=32503.
25.
A.
Pele
and
A.
Effler
, “
aLIGO LLO Logbook 16745 LIGO Laboratory
” (2015). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=16745.
26.
A.
Pele
, “aLIGO LLO Logbook 16958 LIGO Laboratory” (2015). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=16958.
27.
A.
Pele
, “aLIGO LLO Logbook 57273 LIGO Laboratory” (2021). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=57273.
28.
B.
Berger
,
A.
Pele
,
B.
Lance
,
H.
Pham
,
D.
Barker
, and
A.
Effler
, “aLIGO LLO Logbook 60193 LIGO Laboratory” (2022). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=60193.
29.
R.
Schofield
,
P.
Covas
,
A.
Effler
, and
R.
Savage
, “
aLIGO LHO Logbook 37630 LIGO Laboratory
” (2017). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=37630.
30.
R.
Schofield
, “aLIGO LHO Logbook 35735 LIGO Laboratory” (2017). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=35735.
31.
R.
Schofield
, “aLIGO LHO Logbook 36147 LIGO Laboratory” (2017). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=36147.
32.
B.
Berger
,
J.
Smith
,
A.
Effler
, and
K.
Rink
, “aLIGO LLO Logbook 50981 LIGO Laboratory” (2020). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=50981.
33.
G.
Dalya
,
A.
Effler
, and
M.
Heintze
, “aLIGO LLO Logbook 51709 LIGO Laboratory” (2020). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=51709.
34.
T.
Mistry
,
A.
Buikema
,
A.
Lundgren
,
M.
Heintze
,
A.
Pele
,
C.
Blair
,
A.
Effler
, and
G.
Traylor
, “aLIGO LLO Logbook 45432 LIGO Laboratory” (2019). For the Logbook entry, see https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=45432.
35.
R.
Schofield
,
M.
Ball
,
A.
Helmling-Cornell
,
D.
Shoemaker
,
C.
Vorvick
, and
S.
Banagiri
, “aLIGO LHO Logbook 52184 LIGO Laboratory” (2019). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=52184.
36.
L.
Barsotti
,
J.
Harms
, and
R.
Schnabel
, “
Squeezed vacuum states of light for gravitational wave detectors
,”
Rep. Prog. Phys.
82
,
016905
(
2019
).
37.
J.
Drigger
and
R.
Schofield
, “aLIGO LHO Logbook 54556 LIGO Laboratory” (2020). For the Logbook entry, see https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=54556.
You do not currently have access to this content.