Dielectric ceramics with high polarization and low sintering temperature are important for high-performance and low-cost multilayer ceramic capacitors (MLCCs). Herein, BiFeO3 was added to a lead-free composition 0.48BaTiO3-0.4Bi(Mg0.5Hf0.5)O3-0.12SrTiO3 to lower the sintering temperature and increase the polarization simultaneously. As a result, a low sintering temperature of 950 °C and high comprehensive energy storage properties with a recoverable energy density Wrec of 5.7 J/cm3 and an energy efficiency η of 92% at 450 kV/cm were achieved. Together with the good temperature stability and cycling stability of Wrec and η, the ceramics exhibit great potential in the energy storage MLCCs with low-cost Ag-Pd electrodes with a high Ag content.

1.
L.
Yang
,
X.
Kong
,
F.
Li
,
H.
Hao
,
Z.
Cheng
,
H.
Liu
,
J.-F.
Li
, and
S.
Zhang
,
Prog. Mater. Sci.
102
,
72
(
2019
).
2.
G.
Wang
,
Z.
Lu
,
Y.
Li
,
L.
Li
,
H.
Ji
,
A.
Feteira
,
D.
Zhou
,
D.
Wang
,
S.
Zhang
, and
I. M.
Reaney
,
Chem. Rev.
121
(
10
),
6124
(
2021
).
3.
P.
Zhao
,
Z.
Cai
,
L.
Wu
,
C.
Zhu
,
L.
Li
, and
X.
Wang
,
J. Adv. Ceram.
10
(
6
),
1153
(
2021
).
4.
Z.
Yao
,
Z.
Song
,
H.
Hao
,
Z.
Yu
,
M.
Cao
,
S.
Zhang
,
M. T.
Lanagan
, and
H.
Liu
,
Adv. Mater.
29
(
20
),
1601727
(
2017
).
5.
Z.
Tang
,
J.
Ge
,
H.
Ni
,
B.
Lu
,
X.-G.
Tang
,
S.-G.
Lu
,
M.
Tang
, and
J.
Gao
,
J. Alloys Compd.
757
,
169
(
2018
).
6.
P.
Chen
,
P.
Li
,
J.
Zhai
,
B.
Shen
,
F.
Li
, and
S.
Wu
,
Ceram. Int.
43
(
16
),
13371
(
2017
).
7.
R.
Shi
,
Y.
Pu
,
W.
Wang
,
X.
Guo
,
J.
Li
,
M.
Yang
, and
S.
Zhou
,
J. Alloys Compd.
815
,
152356
(
2020
).
8.
H.
Kishi
,
Y.
Mizuno
, and
H.
Chazono
,
Jpn. J. Appl. Phys., Part 1
42
,
1
(
2003
).
9.
A.
Young
,
G.
Hilmas
,
S. C.
Zhang
, and
R. W.
Schwartz
,
J. Am. Ceram. Soc.
90
(
5
),
1504
(
2007
).
10.
B.
Qu
,
H.
Du
,
Z.
Yang
, and
Q.
Liu
,
J. Am. Ceram. Soc.
100
(
4
),
1517
(
2017
).
11.
L.
Yang
,
X.
Kong
,
Z.
Cheng
, and
S.
Zhang
,
ACS Appl. Mater. Interfaces
12
(
29
),
32834
(
2020
).
12.
Y. H.
Huang
,
Y. J.
Wu
,
W. J.
Qiu
,
J.
Li
, and
X. M.
Chen
,
J. Eur. Ceram. Soc.
35
(
5
),
1469
(
2015
).
13.
M.
Zhou
,
R.
Liang
,
Z.
Zhou
, and
X.
Dong
,
Inorg. Chem. Front.
6
(
8
),
2148
(
2019
).
14.
X.
Kong
,
L.
Yang
,
Z.
Cheng
,
G.
Liang
, and
S.
Zhang
,
ACS Appl. Energy Mater.
3
(
12
),
12254
(
2020
).
15.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
, and
M.
Viret
,
Appl. Phys. Lett.
91
(
2
),
022907
(
2007
).
16.
J. B.
Neaton
,
C.
Ederer
,
U. V.
Waghmare
,
N. A.
Spaldin
, and
K. M.
Rabe
,
Phys. Rev. B
71
(
1
),
014113
(
2005
).
17.
M. A.
Beuerlein
,
N.
Kumar
,
T.-M.
Usher
,
H. J.
Brown-Shaklee
,
N.
Raengthon
,
I. M.
Reaney
,
D. P.
Cann
,
J. L.
Jones
, and
G. L.
Brennecka
,
J. Am. Ceram. Soc.
99
(
9
),
2849
(
2016
).
18.
H.
Ogihara
,
C. A.
Randall
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
92
(
1
),
110
(
2009
).
19.
A.
Xie
,
R.
Zuo
,
Z.
Qiao
,
Z.
Fu
,
T.
Hu
, and
L.
Fei
,
Adv. Energy Mater.
11
(
28
),
2101378
(
2021
).
20.
T.
Rojac
,
A.
Bencan
,
B.
Malic
,
G.
Tutuncu
,
J. L.
Jones
,
J. E.
Daniels
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
97
(
7
),
1993
(
2014
).
21.
L.
Yang
,
X.
Kong
,
Q.
Li
,
Y.-H.
Lin
,
S.
Zhang
, and
C.-W.
Nan
,
ACS Appl. Mater. Interfaces
14
(
28
),
32218
(
2022
).
22.
T.
Wang
,
L.
Jin
,
C.
Li
,
Q.
Hu
, and
X.
Wei
,
J. Am. Ceram. Soc.
98
(
2
),
559
(
2015
).
23.
Q.
Hu
,
L.
Jin
,
T.
Wang
,
C.
Li
,
Z.
Xing
, and
X.
Wei
,
J. Alloys Compd.
640
,
416
(
2015
).
24.
W. B.
Li
,
D.
Zhou
,
L. X.
Pang
,
R.
Xu
, and
H. H.
Guo
,
J. Mater. Chem. A
5
(
37
),
19607
(
2017
).
25.
J. B.
Lim
,
S.
Zhang
,
N.
Kim
, and
T. R.
Shrout
,
J. Am. Ceram. Soc.
92
(
3
),
679
(
2009
).
26.
Q.
Yuan
,
G.
Li
,
F.-Z.
Yao
,
S.-D.
Cheng
,
Y.
Wang
,
R.
Ma
,
S.-B.
Mi
,
M.
Gu
,
K.
Wang
,
J.-F.
Li
, and
H.
Wang
,
Nano Energy
52
,
203
(
2018
).
27.
X.
Li
,
X.
Chen
,
J.
Sun
,
M.
Zhou
, and
H.
Zhou
,
Ceram. Int.
46
(
3
),
3426
(
2020
).
28.
Z.
Yang
,
H.
Du
,
S.
Qu
,
Y.
Hou
,
H.
Ma
,
J.
Wang
,
J.
Wang
,
X.
Wei
, and
Z.
Xu
,
J. Mater. Chem. A
4
(
36
),
13778
(
2016
).
29.
J.
Lin
,
G.
Ge
,
K.
Zhu
,
H.
Bai
,
B.
Sa
,
F.
Yan
,
G.
Li
,
C.
Shi
,
J.
Zhai
,
X.
Wu
, and
Q.
Zhang
,
Chem. Eng. J.
444
,
136538
(
2022
).
30.
J.
Xing
,
Y.
Huang
,
B.
Wu
,
H.
Liu
,
Z.
Tan
,
Q.
Chen
,
W.
Zhang
,
D.
Xiao
, and
J.
Zhu
,
ACS Appl. Electron. Mater.
2
(
11
),
3717
(
2020
).
31.
X.
Ren
,
L.
Jin
,
Z.
Peng
,
B.
Chen
,
X.
Qiao
,
D.
Wu
,
G.
Li
,
H.
Du
,
Z.
Yang
, and
X.
Chao
,
Chem. Eng. J.
390
,
124566
(
2020
).
32.
R.
Hu
,
Y.
Lin
,
M.
Zhang
,
Q.
Yuan
, and
H.
Yang
,
Mater. Today Energy
30
,
101185
(
2022
).
33.
L.
Zhang
,
Y.
Pu
,
M.
Chen
, and
G.
Liu
,
J. Eur. Ceram. Soc.
38
(
16
),
5388
(
2018
).
34.
Q.
Xu
,
T.
Li
,
H.
Hao
,
S.
Zhang
,
Z.
Wang
,
M.
Cao
,
Z.
Yao
, and
H.
Liu
,
J. Eur. Ceram. Soc.
35
(
2
),
545
(
2015
).
35.
X.
Zhou
,
H.
Qi
,
Z.
Yan
,
G.
Xue
,
H.
Luo
, and
D.
Zhang
,
ACS Appl. Mater. Interfaces
11
(
46
),
43107
(
2019
).
36.
L.
Yang
,
X.
Kong
,
Z.
Cheng
, and
S.
Zhang
,
J. Mater. Chem. A
7
(
14
),
8573
(
2019
).
37.
Z.
Pan
,
D.
Hu
,
Y.
Zhang
,
J.
Liu
,
B.
Shen
, and
J.
Zhai
,
J. Mater. Chem. C
7
(
14
),
4072
(
2019
).
38.
H.
Yang
,
F.
Yan
,
Y.
Lin
,
T.
Wang
, and
F.
Wang
,
Sci. Rep.
7
(
1
),
8726
(
2017
).
39.
K. H.
Härdtl
,
Ceram. Int.
8
(
4
),
121
(
1982
).

Supplementary Material

You do not currently have access to this content.