Heat transfer in a planar capacitor containing a dielectric liquid subject to an increasing high-frequency voltage and a fixed temperature gradient under microgravity is investigated using direct numerical simulations. When the intensity of the applied voltage exceeds a critical value, the dielectrophoretic force induces thermoelectric convection in the form of stationary vortices. The increase in the voltage leads to different types of convective patterns and to the increase in the heat transfer coefficient between the electrodes of the capacitor.
REFERENCES
1.
B. J.
Kirby
, Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
(
Cambridge University Press
, 2010
).2.
A.
Baïri
,
E.
Zarco-Pernia
, and
J.-M.
García de María
, “
A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity
,” Appl. Therm. Eng.
63
, 304
–322
(2014
).3.
V.
Kishor
,
S.
Singh
, and
A.
Srivastava
, “
Investigation of convective heat transfer phenomena in differentially-heated vertical closed cavity: Whole field experiments and numerical simulations
,” Exp. Therm. Fluid Sci.
99
, 71
–84
(2018
).4.
M. H.
Mousa
,
N.
Miljkovic
, and
K.
Nawaz
, “
Review of heat transfer enhancement techniques for single phase flows
,” Renewable Sustainable Energy Rev.
137
, 110566
(2021
).5.
B.-F.
Wang
,
Q.
Zhou
, and
C.
Sun
, “
Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement
,” Sci. Adv.
6
, aaz8239
(2020
).6.
Y.-C.
Xie
and
K.-Q.
Xia
, “
Turbulent thermal convection over rough plates with varying roughness geometries
,” J. Fluid Mech.
825
, 573
–599
(2017
).7.
L. D.
Landau
and
E. M.
Lifshitz
, Electrodynamics of Continuous Media
, 2nd ed
., Landau and Lifshitz Course of Theoretical Physics Vol.
8
(
Elsevier Butterworth-Heinemann
,
Burlington, MA
, 1984
).8.
P. H.
Roberts
, “
Electrohydrodynamic convection
,” Q. J. Mech. Appl. Math.
22
, 211
–220
(1969
).9.
R. J.
Turnbull
, “
Electrohydrodynamic Rayleigh-Taylor bulk instability
,” Phys. Fluids
12
, 1160
(1969
).10.
H. N.
Yoshikawa
,
M.
Tadie Fogaing
,
O.
Crumeyrolle
, and
I.
Mutabazi
, “
Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions
,” Phys. Rev. E
87
, 043003
(2013
).11.
P. J.
Stiles
, “
Electro-thermal convection in dielectric liquids
,” Chem. Phys. Lett.
179
, 311
–315
(1991
).12.
H. N.
Yoshikawa
,
O.
Crumeyrolle
, and
I.
Mutabazi
, “
Dielectrophoretic force-driven thermal convection in annular geometry
,” Phys. Fluids
25
, 024106
(2013
).13.
C.
Kang
,
A.
Meyer
,
H. N.
Yoshikawa
, and
I.
Mutabazi
, “
Numerical study of thermal convection induced by centrifugal buoyancy in a rotating cylindrical annulus
,” Phys. Rev. Fluids
4
, 043501
(2019
).14.
C.
Kang
and
I.
Mutabazi
, “
Columnar vortices induced by dielectrophoretic force in a stationary cylindrical annulus filled with a dielectric liquid
,” J. Fluid Mech.
908
, A26
(2021
).15.
B.
Futterer
,
A.
Krebs
,
A.-C.
Plesa
,
F.
Zaussinger
,
R.
Hollerbach
,
D.
Breuer
, and
C.
Egbers
, “
Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity
,” J. Fluid Mech.
735
, 647
–683
(2013
).16.
E. B.
Barry
,
H. N.
Yoshikawa
,
C.
Kang
,
A.
Meyer
,
M.
Meier
,
O.
Crumeyrolle
,
C.
Egbers
, and
I.
Mutabazi
, “
Thermoelectric convection in a planar capacitor: Theoretical studies and experiments in parabolic flights
,” C. R. Méc.
351
, 1–15
(2023
).17.
E.
Barry
,
C.
Kang
,
H.
Yoshikawa
, and
I.
Mutabazi
, “
Transfert de chaleur par convection thermoélectrique dans des cavités rectangulaires horizontales
,” Entropie
2
, 1
–11
(2021
).18.
I.
Mutabazi
,
H. N.
Yoshikawa
,
M. T.
Fogaing
,
V.
Travnikov
,
O.
Crumeyrolle
,
B.
Futterer
, and
C.
Egbers
, “
Thermo-electro-hydrodynamic convection under microgravity: A review
,” Fluid Dyn. Res.
48
, 061413
(2016
).19.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,” J. Fluid Mech.
285
, 69
–94
(1995
).20.
A.
Meyer
,
M.
Jongmanns
,
M.
Meier
,
C.
Egbers
, and
I.
Mutabazi
, “
Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity
,” C. R. Méc.
345
, 11
–20
(2017
).21.
F.
Busse
, “
Non-linear properties of thermal convection
,” Rep. Prog. Phys.
41
, 1929
(1978
).22.
P.
Stiles
,
F.
Lin
, and
P.
Blennerhassett
, “
Convective heat transfer through polarized dielectric liquids
,” Phys. Fluids A
5
, 3273
–3279
(1993
).23.
N.
Dahley
,
B.
Futterer
,
C.
Egbers
,
O.
Crumeyrolle
, and
I.
Mutabazi
, “
Parabolic flight experiment ‘convection in a cylinder’—Convection patterns in varying buoyancy forces
,” J. Phys.: Conf. Ser.
318
, 082003
(2011
).24.
S.
Laohalertdecha
,
P.
Naphon
, and
S.
Wongwises
, “
A review of electrohydrodynamic enhancement of heat transfer
,” Renewable Sustainable Energy Rev.
11
, 858
–876
(2007
).25.
P.
Allen
and
T.
Karayiannis
, “
Electrohydrodynamic enhancement of heat transfer and fluid flow
,” Heat Recovery Syst. CHP
15
, 389
–423
(1995
).26.
P.
Atten
and
L.
Elouadie
, “
Ehd convection in a dielectric liquid subjected to unipolar injection: Coaxial wire/cylinder geometry
,” J. Electrost.
34
, 279
–297
(1995
).27.
Z.
Lu
,
G.
Liu
, and
B.
Wang
, “
Flow structure and heat transfer of electrothermoconvection in a dielectric layer
,” Phys. Fluids
31
, 064103
(2019
).28.
Q.
Wang
,
Y.
Guan
,
T.
Wei
, and
J.
Wu
, “
Transition sequences and heat transfer enhancement in electro-thermo-convection of a dielectric liquid between two parallel electrodes
,” Int. J. Therm. Sci.
179
, 107705
(2022
).29.
O.
Nekrasov
and
B.
Smorodin
, “
Electro-thermo-convection of a dielectric liquid in the external dc and ac electric fields
,” Mathematics
11
, 1188
(2023
).30.
Q.
Wang
,
Y.
Guan
,
J.
Wang
, and
J.
Wu
, “
Chaotic electro-convection flow states of a dielectric liquid between two parallel electrodes
,” Eur. J. Mech./B Fluids
89
, 332
–348
(2021
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.