Josephson microwave circuits are essential for the currently flourishing research on superconducting technologies, such as quantum computation, quantum sensing, and microwave signal processing. To increase the possible parameter space for device operation with respect to the current standards, many materials for superconducting circuits are under active investigation. Here, we present the realization of a frequency-tunable, weakly nonlinear Josephson microwave circuit made of the high-temperature cuprate superconductor YBa2Cu3O7 (YBCO), a material with a high critical temperature and a very high critical magnetic field. An in situ frequency-tunability of 300 MHz is achieved by integrating a superconducting quantum interference device (SQUID) into the circuit based on Josephson junctions directly written with a helium ion microscope (HIM). Our results demonstrate that YBCO-HIM-SQUID microwave resonators are promising candidates for quantum sensing and microwave technology applications.

1.
J.
Clarke
and
F. K.
Wilhelm
, “
Superconducting quantum bits
,”
Nature
453
,
1031
1042
(
2008
).
2.
J. Q.
You
and
F.
Nori
, “
Atomic physics and quantum optics using superconducting circuits
,”
Nature
474
,
589
597
(
2011
).
3.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, “
Circuit quantum electrodynamics
,”
Rev. Mod. Phys.
93
,
025005
(
2021
).
4.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
F.
Brooks
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrá
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Pethukov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
5.
M. A.
Castellanos-Beltran
,
K. D.
Irwin
,
G. C.
Hilton
,
L. R.
Vale
, and
K. W.
Lehnert
, “
Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
,”
Nat. Phys.
4
,
929
931
(
2008
).
6.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V. E.
Manucharyan
,
L.
Frunzio
,
D. E.
Prober
,
R. J.
Schoelkopf
,
S. M.
Girvin
, and
M. H.
Devoret
, “
Phase-preserving amplification near the quantum limit with a Josephson ring modulator
,”
Nature
465
,
64
68
(
2010
).
7.
C.
Macklin
,
K.
O'Brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W. D.
Oliver
, and
I.
Siddiqi
, “
A near-quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
8.
K. M.
Sliwa
,
M.
Hatridge
,
A.
Narla
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Reconfigurable Josephson circulator/directional amplifier
,”
Phys. Rev. X
5
,
041020
(
2015
).
9.
A.
Palacios-Laloy
,
F.
Nguyen
,
F.
Mallet
,
P.
Bertet
,
D.
Vion
, and
D.
Esteve
, “
Tunable resonators for quantum circuits
,”
J. Low Temp. Phys.
151
,
1034
1042
(
2008
).
10.
M.
Hatridge
,
R.
Vijay
,
D. H.
Slichter
,
J.
Clarke
, and
I.
Siddiqi
, “
Dispersive magnetometry with a quantum limited SQUID parametric amplifier
,”
Phys. Rev. B
83
,
134501
(
2011
).
11.
E. M.
Levenson-Falk
,
N.
Antler
, and
I.
Siddiqi
, “
Dispersive nanoSQUID magnetometry
,”
Supercond. Sci. Technol.
29
,
113003
(
2016
).
12.
J. R.
Johansson
,
G.
Johansson
, and
F.
Nori
, “
Optomechanical-like coupling between superconducting resonators
,”
Phys. Rev. A
90
,
053833
(
2014
).
13.
C.
Eichler
and
J. R.
Petta
, “
Realizing a circuit analog of an optomechanical system with longitudinally coupled superconducting resonators
,”
Phys. Rev. Lett.
120
,
227702
(
2018
).
14.
D.
Bothner
,
I. C.
Rodrigues
, and
G. A.
Steele
, “
Photon-pressure strong coupling between two superconducting circuits
,”
Nat. Phys.
17
,
85
91
(
2021
).
15.
O.
Shevchuk
,
G. A.
Steele
, and
Y. M.
Blanter
, “
Strong and tunable couplings in flux-mediated optomechanics
,”
Phys. Rev. B
96
,
014508
(
2017
).
16.
I. C.
Rodrigues
,
D.
Bothner
, and
G. A.
Steele
, “
Coupling microwave photons to a mechanical resonator using quantum interference
,”
Nat. Commun.
10
,
5359
(
2019
).
17.
Y.
Nakamura
,
Y. A.
Pashkin
, and
J. S.
Tsai
, “
Coherent control of macroscopic quantum states in a single-Cooper-pair box
,”
Nature
398
,
786
788
(
1999
).
18.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U. C.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L.-M. K.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
1127
(
2018
).
19.
X.
Mi
,
M.
Benito
,
S.
Putz
,
D. M.
Zajac
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
A coherent spin-photon interface in silicon
,”
Nature
555
,
599
603
(
2018
).
20.
T.
Hyart
,
B.
van Heck
,
I. C.
Fulga
,
M.
Burrello
,
A. R.
Akhmerov
, and
C. W. J.
Beenakker
, “
Flux-controlled quantum computation with Majorana fermions
,”
Phys. Rev. B
88
,
035121
(
2013
).
21.
S.
Plugge
,
A.
Rasmussen
,
R.
Egger
, and
K.
Flensberg
, “
Majorana box qubits
,”
New J. Phys.
19
,
012001
(
2017
).
22.
N.
Samkharadze
,
A.
Bruno
,
P.
Scarlino
,
G.
Zheng
,
D. P.
DiVincenzo
,
L.
DiCarlo
, and
L. M. K.
Vandersypen
, “
High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field
,”
Phys. Rev. Appl.
5
,
044004
(
2016
).
23.
J. G.
Kroll
,
F.
Borsoi
,
K. L.
van der Enden
,
W.
Uilhoorn
,
D.
de Jong
,
M.
Quintero-Pérez
,
D. J.
van Woerkom
,
A.
Bruno
,
S. R.
Plissard
,
D.
Car
,
E. P. A. M.
Bakkers
,
M. C.
Cassidy
, and
L. P.
Kouwenhoven
, “
Magnetic-field-resilient superconducting coplanar-waveguide resonators for hybrid circuit quantum electrodynamics experiments
,”
Phys. Rev. Appl.
11
,
064053
(
2019
).
24.
C. W.
Zollitsch
,
J.
O'Sullivan
,
O.
Kennedy
,
G.
Dold
, and
J. J. L.
Morton
, “
Tuning high-Q superconducting resonators by magnetic field reorientation
,”
AIP Adv.
9
,
125225
(
2019
).
25.
K.
Borisov
,
D.
Rieger
,
P.
Winkel
,
F.
Henriques
,
F.
Valenti
,
A.
Ionita
,
M.
Wessbecher
,
M.
Spiecker
,
D.
Gusenkova
,
I. M.
Pop
, and
W.
Wernsdorfer
, “
Superconducting granular aluminum resonators resilient to magnetic fields up to 1 Tesla
,”
Appl. Phys. Lett.
117
,
120502
(
2020
).
26.
A.
Ghirri
,
C.
Bonizzoni
,
D.
Gerace
,
S.
Sanna
,
A.
Cassinese
, and
M.
Affronte
, “
YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles
,”
Appl. Phys. Lett.
106
,
184101
(
2015
).
27.
E. J.
Romans
,
S.
Rozhko
,
L.
Young
,
A.
Blois
,
L.
Hao
,
D.
Cox
, and
J. C.
Gallop
, “
Noise performance of niobium nano-SQUIDs in applied magnetic fields
,”
IEEE Trans. Appl. Supercond.
21
,
404
407
(
2011
).
28.
O. W.
Kennedy
,
J.
Burnett
,
J. C.
Fenton
,
N. G. N.
Constantino
,
P. A.
Warburton
,
J. J. L.
Morton
, and
E.
Dupont-Ferrier
, “
Tunable Nb superconducting resonator based on a constriction nano-SQUID fabricated with a Ne focused ion beam
,”
Phys. Rev. Appl.
11
,
014006
(
2019
).
29.
M.
Xu
,
R.
Cheng
,
Y.
Wu
,
G.
Liu
, and
H. X.
Tang
, “
Magnetic field-resilient quantum-limited parametric amplifier
,”
PRX Quantum
4
,
010322
(
2023
).
30.
J. G.
Kroll
,
W.
Uilhoorn
,
K. L.
van der Enden
,
D.
de Jong
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Goswami
,
M. C.
Cassidy
, and
L. P.
Kouwenhoven
, “
Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions
,”
Nat. Commun.
9
,
4615
(
2018
).
31.
B. H.
Schneider
,
S.
Etaki
,
H. S. J.
van der Zant
, and
G. A.
Steele
, “
Coupling carbon nanotube mechanics to a superconducting circuit
,”
Sci. Rep.
2
,
599
(
2012
).
32.
M.
Mergenthaler
,
A.
Nersisyan
,
A.
Patterson
,
M.
Esposito
,
A.
Baumgartner
,
C.
Schönenberger
,
G. A. D.
Briggs
,
E. A.
Laird
, and
P. J.
Leek
, “
Circuit quantum electrodynamics with carbon-nanotube-based superconducting quantum circuits
,”
Phys. Rev. Appl.
15
,
064050
(
2021
).
33.
F.
Luthi
,
T.
Stavenga
,
O. W.
Enzing
,
A.
Bruno
,
C.
Dickel
,
N. K.
Langford
,
M. A.
Rol
,
T. S.
Jespersen
,
J.
Nygård
,
P.
Krogstrup
, and
L.
DiCarlo
, “
Evolution of nanowire transmon qubits and their coherence in a magnetic field
,”
Phys. Rev. Lett.
120
,
100502
(
2018
).
34.
M.
Pita-Vidal
,
A.
Bargerbos
,
C.-K.
Yang
,
D. J.
van Woerkom
,
W.
Pfaff
,
N.
Haider
,
P.
Krogstrup
,
L. P.
Kouwenhoven
,
G.
de Lange
, and
A.
Kou
, “
Gate-tunable field-compatible fluxonium
,”
Phys. Rev. Appl.
14
,
064038
(
2020
).
35.
K.
Hasselbach
,
D.
Mailly
, and
J. R.
Kirtley
, “
Micro-superconducting quantum interference device characteristics
,”
J. Appl. Phys.
91
,
4432
(
2002
).
36.
A. G. P.
Troeman
,
S. H. W.
van der Ploeg
,
E.
Il'Ichev
,
H.-G.
Meyer
,
A. A.
Golubov
,
M. Y.
Kupriyanov
, and
H.
Hilgenkamp
, “
Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges
,”
Phys. Rev. B
77
,
024509
(
2008
).
37.
R.
Vijay
,
E. M.
Levenson-Falk
,
D. H.
Slichter
, and
I.
Siddiqi
, “
Approaching ideal weak link behavior with three dimensional aluminum nanobridges
,”
Appl. Phys. Lett.
96
,
223112
(
2010
).
38.
M. M.
Khapaev
,
A. Y.
Kidiyarova-Shevchenko
,
P.
Magnelind
, and
M. Y.
Kupriyanov
, “
3D-MLSI: Software package for inductance calculation in multilayer superconducting integrated circuits
,”
IEEE Trans. Appl. Supercond.
11
,
1090
1093
(
2001
).
39.
S. A.
Cybart
,
E. Y.
Cho
,
T. J.
Wong
,
B. H.
Wehlin
,
M. K.
Ma
,
C.
Huynh
, and
R. C.
Dynes
, “
Nano Josephson superconducting tunnel junctions in YB2C3O7−δ directly patterned with a focused helium ion beam
,”
Nat. Nanotechnol.
10
,
598
602
(
2015
).
40.
B.
Müller
,
M.
Karrer
,
F.
Limberger
,
M.
Becker
,
B.
Schröppel
,
C. J.
Burkhardt
,
R.
Kleiner
,
E.
Goldobin
, and
D.
Koelle
, “
Josephson junctions and SQUIDs created by focused helium-ion-beam irradiation of YB2C3O7
,”
Phys. Rev. Appl.
11
,
044082
(
2019
).
41.
K. K.
Likharev
, “
Superconducting weak links
,”
Rev. Mod. Phys.
51
,
101
(
1979
).
42.
D.
Rieger
,
S.
Günzler
,
M.
Spiecker
,
A.
Nambisan
,
W.
Wernsdorfer
, and
I. M.
Pop
, “
Fano interference in microwave resonator measurements
,” arXiv:2209.03036 (
2022
).
43.
I. C.
Rodrigues
,
D.
Bothner
, and
G. A.
Steele
, “
Cooling photon-pressure circuits into the quantum regime
,”
Sci. Adv.
7
,
eabg6653
(
2021
).
44.
D.
Bothner
,
I. C.
Rodrigues
, and
G. A.
Steele
, “
Four-wave-cooling to the single phonon level in Kerr optomechanics
,”
Commun. Phys.
5
,
33
(
2022
).
45.
S.
Pogorzalek
,
K. G.
Fedorov
,
L.
Zhong
,
J.
Goetz
,
F.
Wulschner
,
M.
Fischer
,
P.
Eder
,
E.
Xie
,
K.
Inomata
,
T.
Yamamoto
,
Y.
Nakamura
,
A.
Marx
,
F.
Deppe
, and
R.
Gross
, “
Hysteretic flux response and nondegenerate gain of flux-driven Josephson parametric amplifiers
,”
Phys. Rev. Appl.
8
,
024012
(
2017
).
46.
E. M.
Levenson-Falk
,
R.
Vijay
, and
I.
Siddiqi
, “
Nonlinear microwave response of aluminum weak-link Josephson oscillators
,”
Appl. Phys. Lett.
98
,
123115
(
2011
).
47.
N. E.
Frattini
,
V. V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic range
,”
Phys. Rev. Appl.
10
,
054020
(
2018
).
48.
A.
Roitman
,
A.
Shaulov
, and
Y.
Yeshurun
, “
Characterization of YBa2Cu3O7-δ coplanar resonator for microwave kinetic inductance detectors
,”
Supercond. Sci. Technol.
36
,
015002
(
2023
).
49.
T.
Schwarz
,
J.
Nagel
,
R.
Wölbing
,
M.
Kemmler
,
R.
Kleiner
, and
D.
Koelle
, “
Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields
,”
ACS Nano
7
,
844
850
(
2013
).
50.
K.
Uhl
,
D.
Hackenbeck
,
C.
Füger
,
R.
Kleiner
,
D.
Koelle
, and
D.
Bothner
, “A flux-tunable YBa2Cu3O7 quantum interference microwave circuit: Data and figures,”
Zenodo.
https://zenodo.org/records/13336712

Supplementary Material

You do not currently have access to this content.