We present electrical characterization data of sputtered Nb/a-Si/Nb Josephson junctions (JJs) for high-speed and high-density superconducting circuits. Junctions were studied with critical current densities ( J c) ranging from 0.01 to 3 mA/μm2 at 4 K. For junctions deposited at room temperature and processed to a maximum temperature of 150 °C, the dependence of J c on barrier thickness d is exponential, J c exp ( d / d 0 ), with d 0 constant over the entire range of J c values studied. Junctions were annealed at temperatures up to 300 °C to study changes in their electrical properties and possible compatibility with high temperature fabrication processes. Current–voltage characteristics, critical current uniformity, critical current modulation with in-plane magnetic field, and sub-gap resistance behavior of these junctions were measured at 4 K and demonstrate that the junction properties do not degrade with annealing. These data indicate that Nb/a-Si/Nb JJs are a potential candidate for higher speed and higher density superconducting circuits.

1.
S. K.
Tolpygo
and
V. K.
Semenov
, “
Increasing integration scale of superconductor electronics beyond one million Josephson junctions
,”
J. Phys.: Conf. Ser.
1559
,
012002
(
2020
).
2.
Q.
Herr
,
A.
Braun
,
A.
Brownfield
,
E.
Rudman
,
D.
Dosch
,
T.
Josephsen
, and
A.
Herr
, “
Measurement and data-assisted simulation of bit error rate in RQL circuits
,”
Supercond. Sci. Technol.
35
,
025017
(
2022
).
3.
S. K.
Tolpygo
,
D.
Amparo
,
A.
Kirichenko
, and
D.
Yohannes
, “
Plasma process-induced damage to josephson tunnel junctions in superconducting integrated circuits
,”
Supercond. Sci. Technol.
20
,
S341
(
2007
).
4.
F.
Mueller
,
R.
Behr
,
T.
Weimann
,
L.
Palafox
,
D.
Olaya
,
P. D.
Dresselhaus
, and
S. P.
Benz
, “
1 V and 10 V SNS programmable voltage standards for 70 GHz
,”
IEEE Trans. Appl. Supercond.
19
,
981
986
(
2009
).
5.
A. W.
Kleinsasser
,
R. E.
Miller
,
W. H.
Mallison
, and
G. B.
Arnold
, “
Observation of multiple Andreev reflections in superconducting tunnel junctions
,”
Phys. Rev. Lett.
72
,
1738
1741
(
1994
).
6.
V.
Lacquaniti
,
M.
Belogolovskii
,
C.
Cassiago
,
N. D.
Leo
,
M.
Fretto
, and
A.
Sosso
, “
Universality of transport properties of ultrathin oxide films
,”
New J. Phys.
14
,
023025
(
2012
).
7.
L.
Zeng
,
T.
Greibe
,
P.
Krantz
, and
E.
Olsson
, “
Direct observation of the thickness distribution of ultra thin AlOx barrier in Al/AlOx/Al Josephson junctions
,”
J. Phys. D: Appl. Phys.
48
,
395308
(
2015
).
8.
L. N.
Smith
,
J. B.
Thaxter
,
D. W.
Jillie
, and
H.
Kroger
, “
Sputtered a-silicon tunneling barriers for Nb-Nb josephson junctions
,”
IEEE Trans. Magn.
18
,
1571
1576
(
1982
).
9.
M.
Gurvitch
,
M. A.
Washington
, and
H. A.
Huggins
, “
High quality refractory Josephson tunnel junctions utilizing thin aluminum layers
,”
Appl. Phys. Lett.
42
,
472
474
(
1983
).
10.
D.
Olaya
,
M.
Castellanos-Beltran
,
J.
Pulecio
,
J.
Biesecker
,
S.
Khadem
,
T.
Lewitt
,
P.
Hopkins
,
P.
Dresselhaus
, and
S.
Benz
, “
Planarized process for single-flux-quantum circuits with self-shunted Nb/NbxSi1−x/Nb Josephson junctions
,”
IEEE Trans. Appl. Supercond.
29
,
1101708
(
2019
).
11.
A. W.
Kleinsasser
,
R. E.
Miller
, and
W. H.
Mallison
, “
Dependence of critical current density on oxygen exposure in Nb-AlOx-Nb tunnel junctions
,”
IEEE Trans. Appl. Supercond.
5
,
26
30
(
1995
).
12.
S. K.
Tolpygo
,
V.
Bolkhovsky
,
S.
Zarr
,
T. J.
Weir
,
A.
Wynn
,
A. L.
Day
,
L. M.
Johnson
, and
M. A.
Gouker
, “
Properties of unshunted and resistively shunted Nb/AlOx-Al/Nb Josephson junctions with critical current densities from 0.1 to 1 mA/μm2
,”
IEEE Trans. Appl. Supercond.
27
,
1
15
(
2017
).
13.
A.
Rüfenacht
,
N. E.
Flowers-Jacobs
, and
S. P.
Benz
, “
Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology
,”
Metrologia
55
,
S152
(
2018
).
14.
P. F.
Hopkins
,
J. A.
Brevik
,
M.
Castellanos-Beltran
,
C. A.
Donnelly
,
N. E.
Flowers-Jacobs
,
A. E.
Fox
,
D.
Olaya
,
P. D.
Dresselhaus
, and
S. P.
Benz
, “
RF waveform synthesizers with quantum-based voltage accuracy for communications metrology
,”
IEEE Trans. Appl. Supercond.
29
,
1301105
(
2019
).
15.
D.
Olaya
,
B.
Baek
,
P. D.
Dresselhaus
, and
S. P.
Benz
, “
High-speed Nb / Nb x Si 1 x / Nb Josephson junctions for superconductive digital electronics
,”
IEEE Trans. Appl. Supercond.
18
,
1797
1800
(
2008
).
16.
E.
Leonard
,
M. A.
Beck
,
J.
Nelson
,
B.
Christensen
,
T.
Thorbeck
,
C.
Howington
,
A.
Opremcak
,
I.
Pechenezhskiy
,
K.
Dodge
,
N.
Dupuis
,
M.
Hutchings
,
J.
Ku
,
F.
Schlenker
,
J.
Suttle
,
C.
Wilen
,
S.
Zhu
,
M.
Vavilov
,
B.
Plourde
, and
R.
McDermott
, “
Digital coherent control of a superconducting qubit
,”
Phys. Rev. Appl.
11
,
014009
(
2019
).
17.
L.
Howe
,
M. A.
Castellanos-Beltran
,
A. J.
Sirois
,
D.
Olaya
,
J.
Biesecker
,
P. D.
Dresselhaus
,
S. P.
Benz
, and
P. F.
Hopkins
, “
Digital control of a superconducting qubit using a Josephson pulse generator at 3 K
,”
PRX Quantum
3
,
010350
(
2022
).
18.
D.
Olaya
,
J.
Biesecker
,
M.
Castellanos-Beltran
,
A.
Sirois
,
L.
Howe
,
P.
Dresselhaus
,
S.
Benz
, and
P.
Hopkins
, “
Nb/a-Si/Nb-junction Josephson arbitrary waveform synthesizers for quantum information
,”
IEEE Trans. Appl. Supercond.
33
,
1101708
(
2023
).
19.
C.-H.
Liu
,
A.
Ballard
,
D.
Olaya
,
D. R.
Schmidt
,
J.
Biesecker
,
T.
Lucas
,
J.
Ullom
,
S.
Patel
,
O.
Rafferty
,
A.
Opremcak
,
K.
Dodge
,
V.
Iaia
,
T.
McBroom
,
J. L.
Dubois
,
P. F.
Hopkins
,
S. P.
Benz
,
B. L. T.
Plourde
, and
R.
McDermott
, “
Single flux quantum-based digital control of superconducting qubits in a multi-chip module
,” arXiv:2301.05696 (
2023
).
20.
V g = 2 Δ ( T ) / e, where 2 Δ ( T ) is the temperature-dependent superconducting gap energy and e is the electronic charge.
21.
A. W.
Kleinsasser
,
R. E.
Miller
,
W. H.
Mallison
, and
G. B.
Arnold
, “
Electrical characterization of Nb/Al-oxide/Nb Josephson junctions with high critical current densities
,”
IEEE Trans. Appl. Supercond.
5
,
2735
2738
(
1995
).
22.
A. W.
Kleinsasser
,
F. M.
Rammo
, and
M.
Bhushan
, “
Degradation of superconducting tunnel junction characteristics with increasing barrier transparency
,”
Appl. Phys. Lett.
62
,
1017
1019
(
1993
).
23.
G. B.
Arnold
, “
Superconducting tunneling without the tunneling Hamiltonian. II. Subgap harmonic structure
,”
J. Low Temp. Phys.
68
,
1
27
(
1987
).
24.
J. R.
Schrieffer
and
J. W.
Wilkins
, “
Two-particle tunneling processes between superconductors
,”
Phys. Rev. Lett.
10
,
17
20
(
1963
).
25.
N. R.
Werthamer
, “
Nonlinear self-coupling of josephson radiation in superconducting tunnel junctions
,”
Phys. Rev.
147
,
255
263
(
1966
).
26.
A.
Barone
and
G.
Paternò
,
Physics and Applications of the Josephson Effect
(
John Wiley & Sons
,
1982
).
27.
L.
Abelson
and
G.
Kerber
, “
Superconductor integrated circuit fabrication technology
,”
Proc. IEEE
92
,
1517
1533
(
2004
).
28.
T.
Lehnert
,
D.
Billon
,
C.
Grassl
, and
K. H.
Gundlach
, “
Thermal annealing properties of Nb-Al/AlOx-Nb tunnel junctions
,”
J. Appl. Phys.
72
,
3165
3168
(
1992
).
29.
J.
Magerlein
, “
Specific capacitance of Josephson tunnel junctions
,”
IEEE Trans. Magn.
17
,
286
289
(
1981
).
30.
D. E.
Mccumber
, “
Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions
,”
J. Appl. Phys.
39
,
3113
3118
(
1968
).
31.
Statistical I c data on the same junctions pre- and post-anneal are not shown due to decreased device yield from annealing at 300 °C after fabrication that not included CMP before wiring deposition.
32.
C. L.
Foden
,
N.
Rando
,
A.
van Dordrecht
,
A.
Peacock
,
J.
Lumley
, and
C.
Pereira
, “
Possible observation of multiple-particle tunneling in niobium tunnel junctions
,”
Phys. Rev. B
47
,
3316
3322
(
1993
).
Published by AIP Publishing.
You do not currently have access to this content.