The exploration of novel ultrawide bandgap (UWBG) semiconductors is becoming a challenging and compelling research focus on semiconductor physics, materials, and device applications. Ternary B–C–N compounds have attracted much attention because their electronic structure and semiconductor properties are quite different depending on the chemical composition and atomic arrangement of boron, carbon, and nitrogen elements in the lattice. However, the lack of well-controlled high-quality B–C–N crystals has limited their potential as UWBG devices. In this study, B–C–N compounds are synthesized in bulks from graphite and hexagonal boron nitride (h-BN) using ball milling and high-pressure high temperature technique. The synthesized B–C–N compounds produced are highly crystallized layered-materials with intercalated graphene layers in C-doped h-BN layers. The doped carbon atoms occupy boron sites and nitrogen sites of the h-BN layers unbalanced, giving rise to the n-type conductivity of the B-C-N layered compounds. The measured optical bandgaps range from 3.4 to 6.0 eV, which can be regulated by the carbon content. Their electronic properties are also tunable. Our work is expected to initiate potential applications of the B–C–N material as UWBG semiconductors.

1.
C.
Xie
,
X.
Lu
,
X.
Tong
,
Z.
Zhang
,
F.
Liang
,
L.
Liang
,
L.
Luo
, and
Y.
Wu
,
Adv. Funct. Mater.
29
,
1806006
(
2019
).
2.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
,
Adv. Electron. Mater.
4
,
1600501
(
2018
).
3.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
4.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
,
Appl. Phys. Lett.
106
,
111909
(
2015
).
5.
R.
Singh
,
T. R.
Lenka
,
D. K.
Panda
,
R. T.
Velpula
,
B.
Jain
,
H. Q. T.
Bui
, and
H. P. T.
Nguyen
,
Mater. Sci. Semicond. Proc.
119
,
105216
(
2020
).
6.
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
,
T. R.
Anthony
, and
W. F.
Banholzer
,
Phys. Rev. Lett.
70
,
3764
(
1993
).
7.
I.
Akimoto
,
Y.
Handa
,
K.
Fukai
, and
N.
Naka
,
Appl. Phys. Lett.
105
,
032102
(
2014
).
8.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikström
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
,
Science
297
,
1670
(
2002
).
9.
M. I.
Landstrass
,
M. A.
Plano
,
M. A.
Moreno
,
S.
McWilliams
,
L. S.
Pan
,
D. R.
Kania
, and
S.
Han
,
Diam. Relat. Mater.
2
,
1033
(
1993
).
10.
J. P.
Birrell
,
J.
Gerbi
,
O.
Auciello
,
J. M.
Gibson
,
D. M.
Gruen
, and
J. A.
Carlisle
,
J. Appl. Phys.
93
,
5606
(
2003
).
11.
R.
Yu
,
G.
Liu
,
G.
Wang
,
C.
Chen
,
M.
Xu
,
H.
Zhou
,
T.
Wang
,
J.
Yu
,
G.
Zhao
, and
L.
Zhang
,
J. Mater. Chem. C
9
,
1852
(
2021
).
12.
M.
Kneissl
,
T. Y.
Seong
,
J.
Han
, and
H.
Amano
,
Nat. Photonics
13
,
233
(
2019
).
13.
W.
Yang
,
K.
Xin
,
J.
Yang
,
Q.
Xu
,
C.
Shan
, and
Z.
Wei
,
Small Methods
6
,
2101348
(
2022
).
14.
Y.
Miyamoto
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
52
,
14971
(
1995
).
15.
Y.
Tateyama
,
T.
Ogitsu
,
K.
Kusakabe
,
S.
Tsuneyuki
, and
S.
Itoh
,
Phys. Rev. B
55
,
R10161
(
1997
).
17.
A.
Rubio
,
J. L.
Corkill
, and
M. L.
Cohen
,
Phys. Rev. B
49
,
5081
(
1994
).
18.
Z.
Weng-Sieh
,
K.
Cherrey
,
N. G.
Chopra
,
X.
Blase
,
Y.
Miyamoto
,
A.
Rubio
,
M. L.
Cohen
,
S. G.
Louie
,
A.
Zettl
, and
R.
Gronsky
,
Phys. Rev. B
51
,
11229
(
1995
).
19.
L.
Liu
,
Z.
Zhao
,
T.
Yu
,
S.
Zhang
,
J.
Lin
, and
G.
Yang
,
J. Phys. Chem. C
122
,
6801
(
2018
).
20.
K.
Sivaprakash
,
M.
Induja
, and
P.
Gomathi Priya
,
Mater. Res. Bull.
100
,
313
(
2018
).
21.
V. S.
Sulyaeva
,
Y. M.
Rumyantsev
,
M. L.
Kosinova
,
A. N.
Golubenko
,
N. I.
Fainer
, and
F. A.
Kuznetsov
,
Surf. Coat. Technol.
201
,
9009
(
2007
).
22.
W.
Lei
,
D.
Portehault
,
R.
Dimova
, and
M.
Antonietti
,
J. Am. Chem. Soc.
133
,
7121
(
2011
).
23.
Z.
Luo
,
Y.
Fang
,
M.
Zhou
, and
X.
Wang
,
Angew. Chem. Int. Ed.
58
,
6033
(
2019
).
24.
T.
Lin
,
C.
Su
,
X.
Zhang
,
W.
Zhang
,
Y.
Lee
,
C.
Chu
,
H.
Lin
,
M.
Chang
,
F.
Chen
, and
L.
Li
,
Small
8
,
1384
(
2012
).
25.
M.
Oliveira
and
O.
Conde
,
J. Mater. Res.
16
,
734
(
2001
).
26.
J.
Xiao
,
C.
Wang
,
Q.
Shen
, and
L.
Zhang
,
Surf. Coat. Technol.
276
,
141
(
2015
).
27.
M.
Sreedhara
,
K.
Gopalakrishnan
,
B.
Bharath
,
R.
Kumar
,
G.
Kulkarni
, and
C.
Rao
,
Chem. Phys. Lett.
657
,
124
(
2016
).
28.
R.
Torres
,
I.
Caretti
,
R.
Gago
,
Z.
Martin
, and
I.
Jimenez
,
Diam. Relat. Mater.
16
,
1450
(
2007
).
29.
W.
Matizamhuka
,
I.
Sigalas
,
M.
Herrmann
,
L.
Dubronvinsky
,
N.
Dubrovinskaia
,
N.
Miyajima
,
G.
Mera
, and
R.
Riedel
,
Materials
4
,
2061
(
2011
).
30.
S.
Bai
,
B.
Yao
,
B.
Huang
,
S.
Zhang
,
Z.
Ding
,
X.
Guo
,
X.
Zhou
, and
W.
Su
,
Chem. J. Chin. U
26
,
811
(
2005
).
31.
F.
Guo
,
S.
Li
,
C.
Yang
,
J.
Zhang
,
Y.
Hou
, and
X.
Wang
,
Adv. Opt. Mater.
10
,
2200282
(
2022
).
32.
B.
Sachs
,
T.
Wehling
,
M.
Katsnelson
, and
A.
Lichtenstein
,
Phys. Rev. B
84
,
195414
(
2011
).
33.
Y.
Fan
,
M.
Zhao
,
Z.
Wang
,
X.
Zhang
, and
H.
Zhang
,
Appl. Phys. Lett.
98
,
083103
(
2011
).
34.
S.
Park
,
C.
Park
, and
G.
Kim
,
J. Chem. Phys.
140
,
134706
(
2014
).
35.
G.
Giovannetti
,
P.
Khomyakov
,
G.
Brocks
,
P.
Kelly
, and
J.
Brink
,
Phys. Rev. B
76
,
073103
(
2007
).
36.
F.
Guo
,
P.
Yang
,
Z.
Pan
,
X.
Cao
,
Z.
Xie
, and
X.
Wang
,
Angew. Chem.
56
,
8231
(
2017
).
37.
C.
Huang
,
C.
Chen
,
M.
Zhang
,
L.
Lin
,
X.
Ye
,
S.
Lin
,
M.
Antonietti
, and
X.
Wang
,
Nat. Commun.
6
,
7698
(
2015
).
38.
R. V.
Gorbachev
,
I.
Riaz
,
R. R.
Nair
,
R.
Jalil
,
L.
Britnell
,
B. D.
Belle
,
E. W.
Hill
,
K. S.
Novoselov
,
K.
Watanabe
,
T.
Taniguchi
,
A. K.
Geim
, and
P.
Blake
,
Small
7
,
465
(
2011
).
39.
C.
Chang
,
S.
Kataria
,
C.
Kuo
,
A.
Ganguly
,
B.
Wang
,
J.
Hwang
,
K.
Huang
,
W.
Yang
,
S.
Wang
,
C.
Chuang
,
M.
Chen
,
C.
Huang
,
W.
Pong
,
K.
Song
,
S.
Chang
,
J.
Guo
,
Y.
Tai
,
M.
Tsujimoto
,
S.
Isoda
,
C.
Chen
,
L.
Chen
, and
K.
Chen
,
ACS Nano
7
,
1333
(
2013
).
40.
Q.
Yang
,
P.
Hou
,
M.
Unno
,
S.
Yamauchi
,
R.
Saito
, and
T.
Kyotani
,
Nano Lett.
5
,
2465
(
2005
).
41.
G.
Gao
,
W.
Gao
,
E.
Cannuccia
,
J. T.
Tijerina
,
L.
Balicas
,
A.
Mathkar
,
T. N.
Narayanan
,
Z.
Liu
,
B. K.
Gupta
,
J.
Peng
,
Y.
Yin
,
A.
Rubio
, and
P. M.
Ajayan
,
Nano Lett.
12
,
3518
(
2012
).
42.
Z.
Liu
,
L.
Song
,
S.
Zhao
,
J.
Huang
,
L.
Ma
,
J.
Zhang
,
J.
Lou
, and
P. M.
Ajayan
,
Nano Lett.
11
,
2032
(
2011
).
43.
A.
Inama
,
R.
Brydsonb
, and
D. V.
Edmonds
,
Mater. Charact.
163
,
110264
(
2020
).
44.
K.
Sasaki
,
Y.
Tokura
, and
T.
Sogawa
,
Crystals
3
,
120
(
2013
).
45.
M. A.
Mannan
,
Y.
Baba
,
N.
Hirao
,
T.
Kida
,
M.
Nagano
, and
H.
Noguchi
,
Mater. Sci. Appl.
4
,
11
(
2013
).
46.
E.
Byon
,
M.
Son
,
K. H.
Lee
,
K. S.
Nam
,
N.
Hara
, and
K.
Sugimoto
,
Electrochim. Acta
51
,
2662
(
2006
).
47.
Y.
Li
,
W.
Gao
,
F.
Wang
,
D.
Zhao
,
Y.
Zhang
, and
H.
Yin
,
Coatings
9
,
185
(
2019
).
48.
H. A.
Castillo
,
P. J.
Arango
,
J. M.
Vélez
,
E. R.
Parra
,
G.
Soto
, and
W. D. L.
Cruz
,
Surf. Coat. Technol.
204
,
4051
(
2010
).
49.
P.
Wang
,
D.
He
,
L.
Wang
,
Z.
Kou
,
Y.
Li
,
L.
Xiong
,
Q.
Hu
,
C.
Xu
,
L.
Lei
,
Q.
Wang
,
J.
Liu
, and
Y.
Zhao
,
Appl. Phys. Lett.
107
,
101901
(
2015
).
50.
X.
Liu
,
X.
Jia
,
Z.
Zhang
,
M.
Zhao
,
W.
Guo
,
G.
Huang
, and
H.
Ma
,
Cryst. Growth Des.
11
,
1006
(
2011
).
51.
P.
Giusto
,
D.
Cruz
,
T.
Heil
,
N.
Tarakina
,
M.
Patrini
, and
M.
Antonietti
,
Adv. Sci.
8
,
2101602
(
2021
).
52.
K.
Nose
,
H.
Oba
, and
T.
Yoshida
,
Appl. Phys. Lett.
89
,
112124
(
2006
).
53.
A. H. C.
Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
54.
A.
Zunger
,
A.
Katzir
, and
A.
Halperin
,
Phys. Rev. B
13
,
5560
(
1976
).
55.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
(
2015
).
56.
P.
Saalfrank
,
W.
Rümler
,
H. U.
Hummel
, and
J.
Ladik
,
Synth. Met.
52
,
1
(
1992
).
57.
S. N.
Shirodkar
,
U. V.
Waghmare
,
T. S.
Fisher
, and
R. G.
Crespo
,
Phys. Chem. Chem. Phys.
17
,
13547
(
2015
).
58.
M.
Zhang
,
G.
Gao
,
A.
Kutana
,
Y.
Wang
,
X.
Zou
,
J. S.
Tse
,
B. I.
Yakobson
,
H.
Li
,
H.
Liu
, and
Y.
Ma
,
Nanoscale
7
,
12023
(
2015
).
59.
H.
Nozaki
and
S.
Itoh
,
J. Phys. Chem. Solids
57
,
41
(
1996
).
60.
Y.
Zheng
,
Y.
Jiao
,
L.
Ge
,
M.
Jaroniec
, and
S.
Qiao
,
Angew. Chem. Int. Ed.
52
,
3110
(
2013
).
61.
S.
Wang
,
L.
Zhang
,
Z.
Xia
,
A.
Roy
,
D. W.
Chang
,
J. B.
Baek
, and
L.
Dai
,
Angew. Chem. Int. Ed.
51
,
4209
(
2012
).
62.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
(
2008
).
63.
J.
Tauc
,
R.
Grigorovic
, and
A.
Vancu
,
Phys. Status Solidi
15
,
627
(
1966
).
64.
V.
Yadav
,
H.
Chakraborty
,
M.
Klein
,
U.
Waghmare
, and
C.
Rao
,
Nanoscale
11
,
19398
(
2019
).

Supplementary Material

You do not currently have access to this content.