As a typical two-dimensional van der Waals ferroelectric material, α-In2Se3 has great potential in the applications of optoelectronic devices, memories, sensors, detectors, and synapses. Although it has been proved that α-In2Se3 is with simultaneous intercorrelated in-plane and out-of-plane ferroelectric polarization, the degree-of-freedom of in-plane ferroelectric polarization in the α-In2Se3 and its influence on the other properties have always been neglected because of the difficulties in the characterization and application, comparing with the out-of-plane ferroelectric polarization. Specifically, it has not been revealed the influence mechanism how the in-plane ferroelectric polarization modifies the photodetection performance of the α-In2Se3-based transistor. In this report, the four-terminal transistors based on the multi-layered α-In2Se3 are prepared and used to investigate the in-plane ferroelectric polarization influenced photodetection performance. We have demonstrated that the in-plane ferroelectric polarization may reduce the optical response time of α-In2Se3-based transistors, and the pyroelectric performance induced by the in-plane ferroelectric polarization adds a feature to the α-In2Se3-based transistors. These results promote the four-terminal α-In2Se3-based transistor to be a multi-functional device, which can simultaneously detect the light and its induced temperature variation. Our work may offer an approach to understand the in-plane ferroelectric polarization-modulated multi-functional optoelectronics.

1.
Z.
Lu
,
G. P.
Neupane
,
G.
Jia
et al, “
2D materials based on main group element compounds: Phases, synthesis, characterization, and applications
,”
Adv. Funct. Mater.
30
(
40
),
2001127
(
2020
).
2.
J.
Kim
,
Y.
Lee
,
M.
Kang
et al, “
2D materials for skin-mountable electronic devices
,”
Adv. Mater.
33
(
47
),
2005858
(
2021
).
3.
Y.-q.
Wang
,
Y.-c.
Rui
,
Q.-h.
Zhang
et al, “
A facile in situ synthesis route for CuInS2 quantum-dots/In2S3 Co-sensitized photoanodes with high photoelectric performance
,”
ACS Appl. Mater. Interfaces
5
(
22
),
11858
11864
(
2013
).
4.
J.
Ma
,
H.
Liu
,
N.
Yang
et al, “
Circuit‐level memory technologies and applications based on 2D materials
,”
Adv. Mater.
34
(
48
),
2202371
(
2022
).
5.
X.
Tao
and
Y.
Gu
, “
Crystalline–crystalline phase transformation in two-dimensional In2Se3 Thin layers
,”
Nano Lett.
13
(
8
),
3501
3505
(
2013
).
6.
L.
Wang
,
X.
Wang
,
Y.
Zhang
et al, “
Exploring ferroelectric switching in α‐In2Se3 for neuromorphic computing
,”
Adv. Funct. Mater.
30
(
45
),
2004609
(
2020
).
7.
F.
Xue
,
X.
He
,
J. R. D.
Retamal
et al, “
Gate‐tunable and multidirection-switchable memristive phenomena in a van Der Waals ferroelectric
,”
Adv. Mater.
31
(
29
),
1901300
(
2019
).
8.
X.
Liu
and
M. C.
Hersam
, “
Interface characterization and control of 2D materials and heterostructures
,”
Adv. Mater.
30
(
39
),
1801586
(
2018
).
9.
C.-F.
Fu
,
J.
Sun
,
Q.
Luo
et al, “
Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting
,”
Nano Lett.
18
(
10
),
6312
6317
(
2018
).
10.
F.
He
,
Y.
Zhou
,
Z.
Ye
et al, “
Moiré patterns in 2D materials: A review
,”
ACS Nano
15
(
4
),
5944
5958
(
2021
).
11.
F.
Guo
,
M.
Song
,
M. C.
Wong
et al, “
Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system
,”
Adv. Funct. Mater.
32
(
6
),
2108014
(
2022
).
12.
T.-H.
Chang
,
K.
Li
,
H.
Yang
et al, “
Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities
,”
Adv. Mater.
30
(
47
),
1802418
(
2018
).
13.
M. R.
Kumar
,
S.
Singh
,
H. M.
Fahmy
et al, “
Next generation 2D materials for anodes in battery applications
,”
J. Power Sources
556
,
232256
(
2023
).
14.
S. T. M.
Akkanen
,
H. A.
Fernandez
, and
Z.
Sun
, “
Optical modification of 2D materials: Methods and applications
,”
Adv. Mater.
34
(
19
),
2110152
(
2022
).
15.
W.
Feng
,
F.
Gao
,
Y.
Hu
et al, “
Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets
,”
ACS Appl. Mater. Interfaces
10
(
33
),
27584
27588
(
2018
).
16.
Q.
Qiu
and
Z.
Huang
, “
Photodetectors of 2D materials from ultraviolet to terahertz waves
,”
Adv. Mater.
33
(
15
),
2008126
(
2021
).
17.
S.
Yu
,
X.
Wu
,
Y.
Wang
et al, “
2D materials for optical modulation: Challenges and opportunities
,”
Adv. Mater.
29
(
14
),
1606128
(
2017
).
18.
S.
Mukherjee
,
D.
Dutta
,
P. K.
Mohapatra
et al, “
Scalable integration of coplanar heterojunction monolithic devices on two-dimensional In2Se3
,”
ACS Nano
14
(
12
),
17543
17553
(
2020
).
19.
T.
Jia
,
Z.
Feng
,
S.
Guo
et al, “
Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations
,”
ACS Appl. Mater. Interfaces
12
(
10
),
11852
11864
(
2020
).
20.
Z.
Zhang
,
Y.
Yuan
,
W.
Zhou
et al, “
Strain-induced bandgap enhancement of InSe ultrathin films with self-formed two-dimensional electron gas
,”
ACS Nano
15
(
6
),
10700
10709
(
2021
).
21.
Y.-R.
Chang
,
P.-H.
Ho
,
C.-Y.
Wen
et al, “
Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector
,”
ACS Photonics
4
(
11
),
2930
2936
(
2017
).
22.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
et al, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
(
9
),
5508
5513
(
2017
).
23.
X.
Zheng
,
W.
Han
,
K.
Yang
et al, “
Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy
,”
Sci. Adv.
8
(
42
),
eabo773
(
2022
).
24.
J.
Igo
,
M.
Gabel
,
Z.-G.
Yu
et al, “
Photodefined In-plane heterostructures in two-dimensional In2Se3 nanolayers for ultrathin photodiodes
,”
ACS Appl. Nano Mater.
2
(
10
),
6774
6782
(
2019
).
25.
D.
Kang
,
T.
Rim
,
C.-K.
Baek
et al, “
Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors
,”
Small
10
(
18
),
3795
3802
(
2014
).
26.
Y.
Zhao
,
Y.
Cai
,
L.
Zhang
et al, “
Thermal transport in 2D semiconductors-considerations for device applications
,”
Adv. Funct. Mater.
30
(
8
),
1903929
(
2020
).
27.
X.
Liu
,
S. T.
Howell
,
A. C.
Rubio
et al, “
Thermomechanical nanocutting of 2D materials
,”
Adv. Mater.
32
(
31
),
2001232
(
2020
).
28.
B.
Tang
,
X.
Li
,
J.
Liao
et al, “
Ultralow power consumption and large dynamic range synaptic transistor based on α-In2Se3 nanosheets
,”
ACS Appl. Electron. Mater.
4
(
2
),
598
605
(
2022
).
29.
F.
Cao
,
W.
Tian
,
M.
Wang
et al, “
Polarized ferroelectric field-enhanced self-powered perovskite photodetector
,”
ACS Photonics
5
(
5
),
3731
3738
(
2018
).
30.
Y.
Li
,
C.
Chen
,
W.
Li
et al, “
Orthogonal electric control of the out-of-plane field-effect in 2D ferroelectric α-In2Se3
,”
Adv. Electron. Mater.
6
(
7
),
2000061
(
2020
).
31.
D.
Wu
,
A. J.
Pak
,
Y.
Liu
et al, “
Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes
,”
Nano Lett.
15
(
12
),
8136
8140
(
2015
).
32.
X.
Duan
,
S.
Tang
, and
Z.
Huang
, “
Tuning the electronic properties of two dimensional InSe/In2Se3 heterostructure via ferroelectric polarization and strain
,”
Comput. Mater. Sci.
200
,
110819
(
2021
).
33.
Y. T.
Huang
,
N. K.
Chen
,
Z. Z.
Li
et al, “
Two‐dimensional In2Se3: A rising advanced material for ferroelectric data storage
,”
InfoMat
4
(
8
),
e12341
(
2022
).
34.
G. H.
Jeong
,
S. P.
Sasikala
,
T.
Yun
et al, “
Nanoscale assembly of 2D materials for energy and environmental applications
,”
Adv. Mater.
32
(
35
),
1907006
(
2020
).
35.
C.
Yang
,
X.
Zhang
,
X.
Sun
et al, “
Planar direction‐dependent interfacial properties in monolayer In2Se3-metal contacts
,”
Phys. Status Solidi B
257
(
1
),
1900198
(
2020
).
36.
F.
Xue
,
J.
Zhang
,
W.
Hu
et al, “
Multidirection piezoelectricity in mono-and multilayered hexagonal α-In2Se3
,”
ACS Nano
12
(
5
),
4976
4983
(
2018
).
37.
X. F.
Wei
,
L. W.
Li
,
H. G.
Feng
et al, “
Preparation and optical properties of In2Se3 nanospheres using CTAB as surface modifier
,”
Ceram. Int.
46
(
1
),
1026
1032
(
2020
).
38.
C.
Zhu
,
H.
Shen
,
H.
Liu
et al, “
Solution‐processable two-dimensional In2Se3 nanosheets as efficient photothermal agents for elimination of bacteria
,”
Chem.-Eur. J.
24
(
71
),
19060
19065
(
2018
).
39.
L.
Jin
,
Y.
Wu
,
H.
Zhang
et al, “
In-situ synthesis of the thinnest In2Se3/In2S3/In2Se3 sandwich-like heterojunction for photoelectrocatalytic water splitting
,”
Chem.-Eur. J.
28
(
14
),
e202104428
(
2022
).
40.
C.
Tang
,
L.
Zhang
,
D.
Wijethunge
et al, “
Controllable polarization and doping in ferroelectric In2Se3 monolayers and heterobilayers via intrinsic defect engineering
,”
J. Phys. Chem. C
125
(
44
),
24648
24654
(
2021
).
41.
F.
Xue
,
X.
He
,
Z.
Wang
et al, “
Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing
,”
Adv. Mater.
33
(
21
),
2008709
(
2021
).
42.
M.
Dai
,
Z.
Wang
,
F.
Wang
et al, “
Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors
,”
Nano Lett.
19
(
8
),
5410
5416
(
2019
).
43.
G.
Han
,
Z.-G.
Chen
,
J.
Drennan
et al, “
Indium selenides: Structural characteristics, synthesis and their thermoelectric performances
,”
Small
10
,
2747
(
2014
).
44.
P.
Hou
,
Y.
Lv
,
X.
Zhong
et al, “
α-In2Se3 nanoflakes modulated by ferroelectric polarization and Pt nanodots for photodetection
,”
ACS App. Nano Mater.
2
(
7
),
4443
4450
(
2019
).
45.
B.
Han
,
Y.
Lin
,
Y.
Yang
et al, “
Deep-learning-enabled fast optical identification and characterization of 2D materials
,”
Adv. Mater.
32
(
29
),
2000953
(
2020
).
46.
E. F.
Procopio
,
N. N.
Batista
,
F. A.
L De Souza
et al, “
Emergence of topological edge states in oxidized α-In2Se3 nanosheets: Implications for field-effect transistors
,”
ACS Appl. Nano Mater.
4
(
8
),
8154
8161
(
2021
).
47.
Z.
Lu
,
Z.
Fan
,
P.
Li
et al, “
Ferroelectric Resistive switching in high-density nanocapacitor arrays based on BiFeO3 ultrathin films and ordered Pt nanoelectrodes
,”
ACS Appl. Mater. Interfaces
8
(
8
),
23963
23968
(
2016
).
You do not currently have access to this content.