Structural colorations with all-dielectric metasurfaces provide a dye-free approach for integrated sub-wavelength color generation with enhanced stability and environmental friendliness. However, it remains challenging to simultaneously tailor all the elementary color functions, hue, saturation, and brightness, in a simple platform. Here, we report a generic principle to create bright-field full-color nanoprinting with brightness control by using all-dielectric metasurfaces consisting of arrays of Si elliptical nanopillars. It is demonstrated that the lower order Mie resonances in the reflection spectra redshift with the sizes of the elliptical nanopillars when the incident light polarization is fixed along the major or minor axes. By designing the structure carefully, basic colors, such as red, green, blue, and yellow, are obtained across the visible spectrum. Experimental measurements show that the fabricated colors are independent with respect to the viewing angle owing to the Mie resonance origin. Moreover, we demonstrate that, by varying the angle of either the polarizer or the analyzer, the resonant wavelengths keep invariant while the reflection intensity decreases, leading to the tuning of the brightness of colors from bright to dark without changing the hue and saturation. Our scheme provides a simple yet general approach for the full hue, saturation, brightness control of structural colors, holding great potential in diverse applications, such as anti-counterfeiting technologies, 3D displays, and information storage.

1.
P.
Vukusic
and
J. R.
Sambles
,
Nature
424
,
852
(
2003
).
2.
A. R.
Parker
and
N.
Martini
,
Opt. Laser Technol.
38
,
315
(
2006
).
3.
J. R.
Barnett
,
S.
Miller
, and
E.
Pearce
,
Opt. Laser Technol.
38
,
445
(
2006
).
4.
K.
Baek
,
Y.
Kim
,
S.
Mohd-Noor
, and
J. K.
Hyun
,
ACS Appl. Mater. Interfaces
12
,
5300
(
2020
).
5.
S.
Daqiqeh Rezaei
,
Z.
Dong
,
J.
You En Chan
,
J.
Trisno
,
R. J. H.
Ng
,
Q.
Ruan
,
C.-W.
Qiu
,
N. A.
Mortensen
, and
J. K. W.
Yang
,
ACS Photonics
8
,
18
(
2021
).
6.
M.
Song
,
D.
Wang
,
S.
Peana
,
S.
Choudhury
,
P.
Nyga
,
Z. A.
Kudyshev
,
H.
Yu
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
,
Appl. Phys. Rev.
6
,
041308
(
2019
).
7.
Y.
Shen
,
V.
Rinnerbauer
,
I.
Wang
,
V.
Stelmakh
,
J. D.
Joannopoulos
, and
M.
Soljačić
,
ACS Photonics
2
,
27
(
2015
).
8.
Y.
Gu
,
L.
Zhang
,
J. K.
Yang
,
S. P.
Yeo
, and
C. W.
Qiu
,
Nanoscale
7
,
6409
(
2015
).
9.
B.
Yang
,
H.
Cheng
,
S.
Chen
, and
J.
Tian
,
Mater. Chem. Front.
3
,
750
(
2019
).
10.
G.
Shang
,
M.
Eich
, and
A.
Petrov
,
APL Photonics
5
,
060901
(
2020
).
11.
Y.
Kivshar
and
A.
Miroshnichenko
,
Opt. Photonics News
28
,
24
(
2017
).
12.
T.
Xu
,
Y.-K.
Wu
,
X.
Luo
, and
L. J.
Guo
,
Nat. Commun.
1
,
59
(
2010
).
13.
L.
Li
,
J.
Niu
,
X.
Shang
,
S.
Chen
,
C.
Lu
,
Y.
Zhang
, and
L.
Shi
,
ACS Appl. Mater. Interfaces
13
,
4364
(
2021
).
14.
L.
Shi
,
J.
Niu
,
L.
Li
,
C.
Wang
,
X.
Shang
,
P.
Zhang
,
Y.
Liu
, and
Y.
Zhang
,
Adv. Opt. Mater.
10
,
2200552
(
2022
).
15.
Y.-L.
Zhang
,
J. B.
Pendry
, and
D. Y.
Lei
,
Phys. Rev. B
96
,
035430
(
2017
).
16.
G.
Shang
,
Y.
Häntsch
,
K. P.
Furlan
,
R.
Janßen
,
G. A.
Schneider
,
A.
Petrov
, and
M.
Eich
,
APL Photonics
4
,
046101
(
2019
).
17.
Y.
Nagasaki
,
M.
Suzuki
, and
J.
Takahara
,
Nano Lett.
17
,
7500
(
2017
).
18.
S.
Sun
,
Z.
Zhou
,
C.
Zhang
,
Y.
Gao
,
Z.
Duan
,
S.
Xiao
, and
Q.
Song
,
ACS Nano
11
,
4445
(
2017
).
19.
X.
Liu
,
Z.
Huang
, and
J.
Zang
,
Nano Lett.
20
,
8739
(
2020
).
20.
T.
Okazaki
,
H.
Sugimoto
,
T.
Hinamoto
, and
M.
Fujii
,
Appl. Mater. Interfaces
13
,
13613
(
2021
).
21.
J.
Xue
,
Z.-K.
Zhou
,
Z.
Wei
,
R.
Su
,
J.
Lai
,
J.
Li
,
C.
Li
,
T.
Zhang
, and
X.-H.
Wang
,
Nat. Commun.
6
,
8906
(
2015
).
22.
X.
Shang
,
J.
Niu
,
C.
Wang
,
L.
Li
,
C.
Lu
,
Y.
Zhang
, and
L.
Shi
,
ACS Appl. Mater. Interfaces
14
,
55933
(
2022
).
23.
V.
Lapidas
,
A.
Zhizhchenko
,
E.
Pustovalov
,
D.
Storozhenko
, and
A.
Kuchmizhak
,
Appl. Phys. Lett.
120
,
261104
(
2022
).
24.
Z.
Xuan
,
J.
Li
,
Q.
Liu
,
F.
Yi
,
S.
Wang
, and
W.
Lu
,
Innovation (N Y)
2
,
100081
(
2021
).
25.
Z.
Yan
,
Z.
Zhang
,
W.
Wu
,
X.
Ji
,
S.
Sun
,
Y.
Jiang
,
C. C.
Tan
,
L.
Yang
,
C. T.
Chong
,
C. W.
Qiu
, and
R.
Zhao
,
Nat. Nanotechnol.
16
,
795
(
2021
).
26.
W. J.
Joo
,
J.
Kyoung
,
M.
Esfandyarpour
,
S. H.
Lee
,
H.
Koo
,
S.
Song
,
Y. N.
Kwon
,
S. H.
Song
,
J. C.
Bae
,
A.
Jo
,
M. J.
Kwon
,
S. H.
Han
,
S. H.
Kim
,
S.
Hwang
, and
M. L.
Brongersma
,
Science
370
,
459
(
2020
).
27.
A.
Tittl
,
Light: Sci. Appl.
11
,
155
(
2022
).
28.
M.
Song
,
D.
Wang
,
Z. A.
Kudyshev
,
Y.
Xuan
,
Z.
Wang
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
,
Laser Photonics Rev.
15
,
2000343
(
2021
).
29.
E.
Heydari
,
J. R.
Sperling
,
S. L.
Neale
, and
A. W.
Clark
,
Adv. Funct. Mater.
27
,
1701866
(
2017
).
30.
Y.
Zhang
,
Q.
Zhang
,
X.
Ouyang
,
D. Y.
Lei
,
A. P.
Zhang
, and
H.-Y.
Tam
,
ACS Nano
12
,
9913
(
2018
).
31.
N. S.
King
,
L.
Liu
,
X.
Yang
,
B.
Cerjan
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
,
ACS Nano
9
,
10628
(
2015
).
32.
W.
Yang
,
S.
Xiao
,
Q.
Song
,
Y.
Liu
,
Y.
Wu
,
S.
Wang
,
J.
Yu
,
J.
Han
, and
D. P.
Tsai
,
Nat. Commun.
11
,
1864
(
2020
).
33.
D. G.
Baranov
,
D. A.
Zuev
,
S. I.
Lepeshov
,
O. V.
Kotov
,
A. E.
Krasnok
,
A. B.
Evlyukhin
, and
B. N.
Chichkov
,
Optica
4
,
814
(
2017
).
34.
Y.
Nagasaki
,
M.
Suzuki
,
I.
Hotta
, and
J.
Takahara
,
ACS Photonics
5
,
1460
(
2018
).
35.
V.
Flauraud
,
M.
Reyes
,
R.
Paniagua-Domínguez
,
A. I.
Kuznetsov
, and
J.
Brugger
,
ACS Photonics
4
,
1913
(
2017
).
36.
C.
Zhang
,
J.
Jing
,
Y.
Wu
,
Y.
Fan
,
W.
Yang
,
S.
Wang
,
Q.
Song
, and
S.
Xiao
,
ACS Nano
14
,
1418
(
2020
).
37.
C. S.
Park
,
I.
Koirala
,
S.
Gao
,
V. R.
Shrestha
,
S. S.
Lee
, and
D. Y.
Choi
,
Opt. Express
27
,
667
(
2019
).
38.
J. H.
Yang
,
V. E.
Babicheva
,
M. W.
Yu
,
T. C.
Lu
,
T. R.
Lin
, and
K. P.
Chen
,
ACS Nano
14
,
5678
(
2020
).
39.
J.
Zhao
,
M.
Qiu
,
X.
Yu
,
X.
Yang
,
W.
Jin
,
D.
Lei
, and
Y.
Yu
,
Adv. Opt. Mater.
7
,
1900646
(
2019
).
40.
R. C.
González
,
R. E.
Woods
, and
B. R.
Masters
,
J. Biomed. Opt.
14
,
029909
(
2009
).
41.
J.
Proust
,
F.
Bedu
,
B.
Gallas
,
I.
Ozerov
, and
N.
Bonod
,
ACS Nano
10
,
7761
(
2016
).
42.
M.
Miyata
,
H.
Hatada
, and
J.
Takahara
,
Nano Lett.
16
,
3166
(
2016
).
43.
Q.
Dai
,
G.
Zhu
,
W.
Zhang
,
J.
Li
,
Z.
Li
,
H.
Cui
,
K.
Wei
,
Z.
He
,
Z.
Guan
, and
G.
Zheng
,
Opt Express
30
,
33574
(
2022
).
44.
Y.
Bao
,
Y.
Yu
,
H.
Xu
,
C.
Guo
,
J.
Li
,
S.
Sun
,
Z.-K.
Zhou
,
C.-W.
Qiu
, and
X.-H.
Wang
,
Light Sci. Appl.
8
,
95
(
2019
).
45.
J.
Olson
,
A.
Manjavacas
,
T.
Basu
,
D.
Huang
,
A. E.
Schlather
,
B.
Zheng
,
N. J.
Halas
,
P.
Nordlander
, and
S.
Link
,
ACS Nano
10
,
1108
(
2016
).
46.
S.
Gao
,
C. S.
Park
,
S. S.
Lee
, and
D. Y.
Choi
,
Nanoscale
11
,
4083
(
2019
).
47.
X.
Guo
,
J.
Zhong
,
B.
Li
,
S.
Qi
,
Y.
Li
,
P.
Li
,
D.
Wen
,
S.
Liu
,
B.
Wei
, and
J.
Zhao
,
Adv. Mater.
34
,
e2103192
(
2022
).
48.
M.
Kim
,
K.
Yao
,
G.
Yoon
,
I.
Kim
,
Y.
Liu
, and
J.
Rho
,
Adv. Opt. Mater.
5
,
1700600
(
2017
).
49.
Y.
Kim
,
K.
Jung
,
J.
Cho
, and
J. K.
Hyun
,
ACS Nano
13
,
10717
(
2019
).
50.
B.
Yang
,
W.
Liu
,
Z.
Li
,
H.
Cheng
,
S.
Chen
, and
J.
Tian
,
Adv. Opt. Mater.
6
,
1701009
(
2018
).
51.
X.
Zang
,
F.
Dong
,
F.
Yue
,
C.
Zhang
,
L.
Xu
,
Z.
Song
,
M.
Chen
,
P. Y.
Chen
,
G. S.
Buller
,
Y.
Zhu
,
S.
Zhuang
,
W.
Chu
,
S.
Zhang
, and
X.
Chen
,
Adv. Mater.
30
,
e1707499
(
2018
).
52.
J.
Zhao
,
X.
Yu
,
K.
Zhou
,
W.
Zhang
,
W.
Yuan
, and
Y.
Yu
,
Opt. Lasers Eng.
138
,
106421
(
2021
).
53.
X.-T.
Zhou
,
R.-C.
Jin
,
J.
Wang
,
J.-Q.
Li
, and
Z.-G.
Dong
,
Appl. Phys. Express
12
,
092010
(
2019
).
54.
E. D.
Palik
, in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic Press
,
Burlington
,
1985
), pp.
xvii
xviii
.
You do not currently have access to this content.