Self-standing carbon fiber electrodes hold promise for solid-state battery technology owing to their networked structures improving interparticle connectivity, robustness contributing to mechanical integrity, and surface sites confining Li dendrites. We here evaluate carbonized 3D electrospun fibers filled with polymer electrolytes as anodes in solid-state lithium half cells. Microscopic analysis of the cells demonstrates the high wettability of carbon fibers with electrolytes, promoting an intimate contact between electrolytes and fibers. Solid-state cells delivered high initial capacities up to ∼300 mAh g−1, although the latter cycles were characterized by gradual capacity fade (∼100 mAh g−1 in the 100th cycle with nearly 100% coulombic efficiency), attributed to the onset of parasitic reactions increasing the cell resistance and polarization. When these were benchmarked against similar cells but with the liquid electrolyte, it was found that Li storage in these fiber electrodes is intermediate between graphite and hard carbon in terms of lithiation voltage (vs Li/Li+), corroborating with the nature of carbon assessed by XRD and Raman analysis. These observations can contribute to further development and optimization of solid-state batteries with 3D electrospun carbon fiber electrodes.

1.
H.
Budde-Meiwes
,
J.
Drillkens
,
B.
Lunz
,
J.
Muennix
,
S.
Rothgang
,
J.
Kowal
et al, “
A review of current automotive battery technology and future prospects
,”
Proc. Inst. Mech. Eng., D
227
(
5
),
761
776
(
2013
).
2.
M. R.
Palacín
, “
Recent advances in rechargeable battery materials: A chemist's perspective
,”
Chem. Soc. Rev.
38
(
9
),
2565
2575
(
2009
).
3.
J. R.
Owen
, “
Rechargeable lithium batteries
,”
Chem. Soc. Rev.
26
(
4
),
259
267
(
1997
).
4.
J. B.
Goodenough
and
Y.
Kim
, “
Challenges for rechargeable Li batteries
,”
Chem. Mater.
22
(
3
),
587
603
(
2010
).
5.
J. M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,”
Nature
414
(
6861
),
359
367
(
2001
).
6.
M.
Armand
and
J. M.
Tarascon
, “
Building better batteries
,”
Nature
451
,
652
(
2008
).
7.
T.
Ohsaki
,
T.
Kishi
,
T.
Kuboki
,
N.
Takami
,
N.
Shimura
,
Y.
Sato
et al, “
Overcharge reaction of lithium-ion batteries
,”
J. Power Sources
146
(
1
),
97
100
(
2005
).
8.
G. G.
Eshetu
,
X.
Judez
,
C.
Li
,
M.
Martinez-Ibañez
,
E.
Sanchez-Diez
,
L. M.
Rodriguez-Martinez
et al, “
Solid electrolytes for lithium metal and future lithium-ion batteries
,” in
Future Lithium-Ion Batteries
(
Royal Society of Chemistry
,
2019
), pp.
72
101
.
9.
Y. J.
Nam
,
D. Y.
Oh
,
S. H.
Jung
, and
Y. S.
Jung
, “
Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes
,”
J. Power Sources
375
,
93
101
(
2018
).
10.
J.
Janek
and
W. G.
Zeier
, “
A solid future for battery development
,”
Nat. Energy
1
,
16141
(
2016
).
11.
S.
Wang
,
R.
Fang
,
Y.
Li
,
Y.
Liu
,
C.
Xin
,
F. H.
Richter
et al, “
Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes
,”
J. Materiomics
7
,
209
218
(
2020
).
12.
M.
Golozar
,
A.
Paolella
,
H.
Demers
,
S.
Savoie
,
G.
Girard
,
N.
Delaporte
et al, “
Direct observation of lithium metal dendrites with ceramic solid electrolyte
,”
Sci. Rep.
10
(
1
),
18410
(
2020
).
13.
B.
Commarieu
,
A.
Paolella
,
S.
Collin-Martin
,
C.
Gagnon
,
A.
Vijh
,
A.
Guerfi
et al, “
Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries
,”
J. Power Sources
436
,
226852
(
2019
).
14.
Y. K.
Sun
, “
Promising all-solid-state batteries for future electric vehicles
,”
ACS Energy Lett.
5
(
10
),
3221
3223
(
2020
).
15.
A.
Varzi
,
R.
Raccichini
,
S.
Passerini
, and
B.
Scrosati
, “
Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
,”
J. Mater. Chem. A
4
(
44
),
17251
17259
(
2016
).
16.
G.
Homann
,
L.
Stolz
,
J.
Nair
,
I. C.
Laskovic
,
M.
Winter
, and
J.
Kasnatscheew
, “
Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: Evaluating the role of electrolyte oxidation in rapid cell failure
,”
Sci. Rep.
10
(
1
),
4390
(
2020
).
17.
S.
Goutam
,
N.
Omar
,
P. V. D.
Bossche
, and
J. V.
Mierlo
, “
Review of nanotechnology for anode materials in batteries
,” in
Emerging Nanotechnologies in Rechargeable Energy Storage Systems
, edited by L. M. Rodriguez-Martinez and N. Omar (
Elsevier
,
Boston
,
2017
), Chap. 2, pp.
45
82
. Available from: http://www.sciencedirect.com/science/article/pii/B9780323429771000029
18.
P. S.
Kumar
,
R.
Sahay
,
V.
Aravindan
,
J.
Sundaramurthy
,
W. C.
Ling
,
V.
Thavasi
et al, “
Free-standing electrospun carbon nanofibres—A high performance anode material for lithium-ion batteries
,”
J. Phys. D: Appl. Phys.
45
(
26
),
265302
(
2012
).
19.
G.
Li
,
Z.
Liu
,
Q.
Huang
,
Y.
Gao
,
M.
Regula
,
D.
Wang
et al, “
Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects
,”
Nat. Energy
3
(
12
),
1076
1083
(
2018
).
20.
N.
Liu
,
Z.
Lu
,
J.
Zhao
,
M. T.
McDowell
,
H. W.
Lee
,
W.
Zhao
et al, “
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
,”
Nat. Nanotechnol.
9
(
3
),
187
192
(
2014
).
21.
H. G.
Wang
,
S.
Yuan
,
D. L.
Ma
,
X. B.
Zhang
, and
J. M.
Yan
, “
Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance
,”
Energy Environ. Sci.
8
(
6
),
1660
1681
(
2015
).
22.
Y.
Liu
,
J. S.
Xue
,
T.
Zheng
, and
J. R.
Dahn
, “
Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
,”
Carbon
34
(
2
),
193
200
(
1996
).
23.
R. S.
Morris
,
B. G.
Dixon
,
T.
Gennett
,
R.
Raffaelle
, and
M. J.
Heben
, “
High-energy, rechargeable Li-ion battery based on carbon nanotube technology
,”
J. Power Sources
138
(
1
),
277
280
(
2004
).
24.
C.
Kim
,
K. S.
Yang
,
M.
Kojima
,
K.
Yoshida
,
Y. J.
Kim
,
Y. A.
Kim
et al, “
Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries
,”
Adv. Funct. Mater.
16
(
18
),
2393
2397
(
2006
).
25.
F.
Ko
,
Y.
Gogotsi
,
A.
Ali
,
N.
Naguib
,
H.
Ye
,
G. L.
Yang
et al, “
Electrospinning of continuous carbon nanotube-filled nanofiber yarns
,”
Adv. Mater.
15
(
14
),
1161
1165
(
2003
).
26.
C.
Kim
and
K. S.
Yang
, “
Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning
,”
Appl. Phys. Lett.
83
(
6
),
1216
1218
(
2003
).
27.
M.
Vong
,
E.
Speirs
,
C.
Klomkliang
,
I.
Akinwumi
,
W.
Nuansing
, and
N.
Radacsi
, “
Controlled three-dimensional polystyrene micro- and nano-structures fabricated by three-dimensional electrospinning
,”
RSC Adv.
8
(
28
),
15501
15512
(
2018
).
28.
M.
Vong
,
F. J.
Diaz Sanchez
,
A.
Keirouz
,
W.
Nuansing
, and
N.
Radacsi
, “
Ultrafast fabrication of nanofiber-based 3D macrostructures by 3D electrospinning
,”
Mater. Des.
208
,
109916
(
2021
).
29.
F.
Wu
,
K.
Zhang
,
Y.
Liu
,
H.
Gao
,
Y.
Bai
,
X.
Wang
et al, “
Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects
,”
Energy Storage Mater.
33
,
26
54
(
2020
).
30.
H.
Ogawa
and
K.
Saito
, “
Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index
,”
Carbon
33
(
6
),
783
788
(
1995
).
31.
T.
Chen
,
Y.
Liu
,
L.
Pan
,
T.
Lu
,
Y.
Yao
,
Z.
Sun
et al, “
Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance
,”
J. Mater. Chem. A
2
(
12
),
4117
4121
(
2014
).
32.
B.
Xu
,
M. S.
Wu
,
G.
Liu
, and
C. Y.
Ouyang
, “
Understanding the effect of the layer-to-layer distance on Li-intercalated graphite
,”
J. Appl. Phys.
111
(
12
),
124325
(
2012
).
33.
A. C.
Ferrari
and
J.
Robertson
, “
Interpretation of Raman spectra of disordered and amorphous carbon
,”
Phys. Rev. B
61
(
20
),
14095
14107
(
2000
).
34.
M. R.
Ammar
and
J. N.
Rouzaud
, “
How to obtain a reliable structural characterization of polished graphitized carbons by Raman microspectroscopy
,”
J. Raman Spectrosc.
43
(
2
),
207
211
(
2012
).
35.
X.
Liu
,
M.
Ouyang
,
M. W.
Orzech
,
Y.
Niu
,
W.
Tang
,
J.
Chen
et al, “
In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices
,”
Energy Storage Mater.
30
,
329
336
(
2020
).
36.
X.
Dou
,
I.
Hasa
,
D.
Saurel
,
C.
Vaalma
,
L.
Wu
,
D.
Buchholz
et al, “
Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry
,”
Mater. Today
23
,
87
104
(
2019
).
37.
K.
Xu
, “
Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
,”
Chem. Rev.
104
(
10
),
4303
4418
(
2004
).
38.
M.
Endo
,
C.
Kim
,
K.
Nishimura
,
T.
Fujino
, and
K.
Miyashita
, “
Recent development of carbon materials for Li ion batteries
,”
Carbon
38
(
2
),
183
197
(
2000
).
39.
V.
Subramanian
,
H.
Zhu
, and
B.
Wei
, “
High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers
,”
J. Phys. Chem. B
110
(
14
),
7178
7183
(
2006
).
40.
M.
Winter
,
J. O.
Besenhard
,
M. E.
Spahr
, and
P.
Novák
, “
Insertion electrode materials for rechargeable lithium batteries
,”
Adv. Mater.
10
(
10
),
725
763
(
1998
).
41.
Y.
Chen
,
X.
Li
,
X.
Zhou
,
H.
Yao
,
H.
Huang
,
Y. W.
Mai
et al, “
Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials
,”
Energy Environ. Sci.
7
(
8
),
2689
2696
(
2014
).
42.
H.
Xiang
,
P.
Shi
,
P.
Bhattacharya
,
X.
Chen
,
D.
Mei
,
M. E.
Bowden
et al, “
Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes
,”
J. Power Sources
318
,
170
177
(
2016
).
43.
I.
Ismail
,
A.
Noda
,
A.
Nishimoto
, and
M.
Watanabe
, “
XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes
,”
Electrochim. Acta
46
(
10
),
1595
1603
(
2001
).
44.
X.
Judez
,
H.
Zhang
,
C.
Li
,
J. A.
González-Marcos
,
Z.
Zhou
,
M.
Armand
et al, “
Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell
,”
J. Phys. Chem. Lett.
8
(
9
),
1956
1960
(
2017
).
45.
K.
Xu
,
U.
Lee
,
S.
Zhang
,
M.
Wood
, and
R. T.
Jow
, “
Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes
,”
Electrochem. Solid-State Lett.
6
(
7
),
A144
(
2003
).
46.
B. S.
Parimalam
and
B. L.
Lucht
, “
Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI
,”
J. Electrochem. Soc.
165
(
2
),
A251
(
2018
).

Supplementary Material

You do not currently have access to this content.