Pulsed power systems require high-performance capacitors with high energy storage density. In this work, (1 − x)BaTiO3-xBi(Mg1/2Sn1/2)O3 ferroelectric ceramics were synthesized in a solid-state solution. The sample of x = 0.12 (0.88BT-0.12BMS) has excellent energy storage density, wide temperature, and wide frequency stability. The excellent energy density of 4.87 J/cm3 at 315 kV/cm and the energy efficiency of 72% at room temperature for 0.88BT-0.12BMS ceramics were achieved. Furthermore, the 0.88BT-0.12BMS ceramics demonstrated well temperature stabilities in the range of 20–100 °C and very good frequency stability in the range of 1–100 Hz. Through pulsed charging–discharging testing, the current density is calculated as 314.01 A/cm2, and the power density is 21.98 MW/cm3. Moreover, the oxygen vacancies' defects and ferroelectric domain mechanism for enhanced breakdown strength as well as high energy density were discussed. These findings broaden the horizon for lead-free dielectrics and show promising applications for pulse power capacitors.

1.
L.
Yang
,
X.
Kong
,
F.
Li
,
H.
Hao
,
Z.
Cheng
,
H.
Liu
,
J.-F.
Li
, and
S.
Zhang
,
Prog. Mater. Sci.
102
,
72
(
2019
).
2.
Y.
Lin
,
D.
Li
,
M.
Zhang
, and
H.
Yang
,
J. Mater. Chem. C
8
,
2258
(
2020
).
3.
Z.
Tang
,
J.
Chen
,
B.
Yang
, and
S.
Zhao
,
Appl. Phys. Lett.
114
,
163901
(
2019
).
4.
P.
Qiao
,
Y.
Zhang
,
X.
Chen
,
M.
Zhou
,
G.
Wang
, and
X.
Dong
,
J. Alloy Compd.
780
,
581
(
2019
).
5.
Z.
Yao
,
Z.
Song
,
H.
Hao
,
Z.
Yu
,
M.
Cao
,
S.
Zhang
,
M. T.
Lanagan
, and
H.
Liu
,
Adv. Mater.
29
,
1601727
(
2017
).
6.
T. A.
Duong
,
C. W.
Ahn
,
B. W.
Kim
,
M. R.
Bafandeh
,
H.-S.
Han
, and
J.-S.
Lee
,
J. Electron. Mater.
51
,
1490
(
2022
).
7.
F.
Yan
,
H.
Bai
,
G.
Ge
,
J.
Lin
,
C.
Shi
,
K.
Zhu
,
B.
Shen
,
J.
Zhai
, and
S.
Zhang
,
Small
18
,
e2106515
(
2022
).
8.
C.
Wu
,
X.
Qiu
,
L.
Chen
,
C.
Liu
,
W.
Cheng
,
X.
Bing
,
H.
Zhao
,
W.
Ge
,
Z.
Liu
, and
M.
Yao
,
J. Mater. Sci.
57
,
229
(
2022
).
9.
W.
Yang
,
F.
Huang
,
L.
Shu
,
Y.
Yang
,
B.
Gong
,
X.
Lu
, and
J.
Zhu
,
J. Mater. Chem. C
10
,
3876
(
2022
).
10.
F.
Li
,
D.
Lin
,
Z.
Chen
,
Z.
Cheng
,
J.
Wang
,
C.
Li
,
Z.
Xu
,
Q.
Huang
,
X.
Liao
,
L. Q.
Chen
,
T. R.
Shrout
, and
S.
Zhang
,
Nat. Mater.
17
,
349
(
2018
).
11.
Z.
Chen
,
N.
Lin
,
Z.
Yang
,
J.
Zhang
,
K.
Shi
,
X.
Sun
,
B.
Gao
, and
T.
Zhao
,
Micromachines (Basel)
12
,
1556
(
2021
).
12.
H.
Jia
,
W.
Zhu
,
S.
Yang
,
F.
Li
, and
L.
Wang
,
J. Eur. Ceram. Soc.
41
,
6406
(
2021
).
13.
J.
Yuan
,
Y.-H.
Lin
,
H.
Lu
,
B.
Cheng
, and
C.-W.
Nan
,
J. Am. Ceram. Soc.
94
,
1966
(
2011
).
14.
J.
Tan
,
Y.
Guo
, and
J.
Zhao
,
J. Mater. Chem.
C 9
,
8011
8019
(
2021
).
15.
N.
Raengthon
,
D. P.
Cann
, and
J.
Roedel
,
J. Am. Ceram. Soc.
95
,
1604
(
2012
).
16.
X.
Zhao
,
Z.
Zhou
,
R.
Liang
,
F.
Liu
, and
X.
Dong
,
Ceram. Int.
43
,
9060
(
2017
).
17.
M.
Zhou
,
R.
Liang
,
Z.
Zhou
, and
X.
Dong
,
Ceram. Int.
45
,
3582
(
2019
).
18.
X.-S.
Qian
,
H.-J.
Ye
,
Y.-T.
Zhang
,
H.
Gu
,
X.
Li
,
C. A.
Randall
, and
Q. M.
Zhang
,
Adv. Funct. Mater.
24
,
1300
(
2014
).
19.
J.
Valasek
,
Phys. Rev.
17
(
4
),
475
(
1921
).
20.
W.
Cao
,
W.
Li
,
T.
Zhang
,
J.
Sheng
,
Y.
Hou
,
Y.
Feng
,
Y.
Yu
, and
W.
Fei
,
Energy Technol.
12
(
3
),
1198
1204
(
2015
).
21.
L.
Zhao
,
Q.
Liu
,
J.
Gao
,
S.
Zhang
, and
J. F.
Li
,
Adv. Mater.
29
,
1701824
(
2017
).
22.
Z.
Liu
,
A.
Zhang
,
S.
Xu
,
J.
Lu
,
B.
Xie
,
K.
Guo
, and
Y.
Mao
,
J. Alloy Compd.
823
,
153772
(
2020
).
23.
R.
Wu
,
L.
Liang
,
R.
Duan
,
J.
Zhao
,
Z.
Li
,
G.
Bian
, and
J.
Wang
,
Ferroelectrics
573
,
246
(
2021
).
24.
W.
Cao
,
W.
Li
,
Q.
Lin
, and
D.
Xu
,
J. Mater. Sci.: Mater. Electron.
32
,
17645
(
2021
).
25.
G.
Liu
,
J.
Dong
,
L.
Zhang
,
L.
Yu
,
F.
Wei
,
Y.
Li
,
J.
Gao
,
J.
Hu
,
Y.
Yan
,
Q.
Li
,
K.
Yu
, and
L.
Jin
,
Ceram. Int.
46
,
11680
(
2020
).
26.
Q.
Yuan
,
G.
Li
,
F.-Z.
Yao
,
S.-D.
Cheng
,
Y.-F.
Wang
,
R.
Ma
,
S.-B.
Mi
,
K.
Wang
,
J.-F.
Li
, and
H.
Wang
,
Nano Energy
52
,
203
210
(
2018
).
27.
Y.
Luo
,
C.
Wang
,
C.
Chen
,
Y.
Gao
,
F.
Sun
,
C.
Li
,
X.
Yin
,
C.
Luo
,
U.
Kentsch
,
X.
Cai
,
M.
Bai
,
Z.
Fan
,
M.
Qin
,
M.
Zeng
,
J.
Dai
,
G.
Zhou
,
X.
Lu
,
X.
Lou
,
S.
Zhou
,
X.
Gao
,
D.
Chen
, and
J.-M.
Liu
,
Appl. Phys. Rev.
10
,
011403
(
2023
).
28.
X.
Chen
,
X.
Li
,
H.
Zhou
,
J.
Sun
,
X.
Li
,
X.
Yan
,
C.
Sun
, and
J.
Shi
,
J. Adv. Ceram.
8
,
427
(
2019
).
29.
G.
Dale
,
M.
Strawhorne
,
D. C.
Sinclair
, and
J. S.
Dean
,
J. Am. Ceram. Soc.
101
,
1211
(
2018
).
30.
F.
Gheorghiu
,
L.
Padurariu
,
M.
Airimioaei
,
L.
Curecheriu
,
C.
Ciomaga
,
C.
Padurariu
,
C.
Galassi
, and
L.
Mitoseriu
,
J. Am. Ceram. Soc.
100
,
647
(
2017
).
31.
S. H.
Yang
,
A.
Anderko
,
R. E.
Riman
, and
A.
Navrotsky
,
Acta. Mater.
220
,
117289
(
2021
).
32.
T. F.
Zhang
,
X. G.
Tang
,
Q. X.
Liu
,
Y. P.
Jiang
,
X. X.
Huang
, and
Q. F.
Zhou
,
J. Phys. D: Appl. Phys.
49
,
095302
(
2016
).
33.
F.
Si
,
B.
Tang
,
Z.
Fang
,
H.
Li
, and
S.
Zhang
,
J. Alloy Compd.
819
,
153004
(
2020
).
34.
Y.
Yang
,
A.
Xiao
,
J.
Zhao
, and
X.
Ren
,
Scr. Mater.
203
,
114042
(
2021
).

Supplementary Material

You do not currently have access to this content.