This paper studies thermal transport in nanoporous silicon with a significant specific surface area. First, the equilibrium molecular dynamics approach was used to obtain the dependence of thermal conductivity on a specific surface area. Then, a modified phonon transport kinetic theory-based approach was developed to analyze thermal conductivity. Two models were used to evaluate the phonon mean free path in the porous materials. The first model assumes that the dependence of the mean free path only relies on the specific surface area, and the second one also considers the mean free path variation with the porosity. Both approaches approximate molecular dynamics data well for the smaller porosity values. However, the first model fails for highly porous matrixes, while the second one matches well with molecular dynamics simulations across all considered ranges of the porosities. This work illustrates that the phonon mean free path dependence with the porosity/volume fraction of composite materials is essential for describing thermal transport in systems with significant surface-to-volume ratio.

1.
M.
Isaiev
,
X.
Wang
,
K.
Termentzidis
, and
D.
Lacroix
, “
Thermal transport enhancement of hybrid nanocomposites; impact of confined water inside nanoporous silicon
,”
Appl. Phys. Lett.
117
(
3
),
033701
(
2020
).
2.
R.
Vercauteren
,
G.
Scheen
,
J. P.
Raskin
, and
L. A.
Francis
, “
Porous silicon membranes and their applications: Recent advances
,”
Sens. Actuators A: Phys.
318
,
112486
(
2021
).
3.
R. F.
Sierra-Moreno
,
I. A.
Lujan-Cabrera
,
J. M.
Cabrera-Teran
,
E.
Ortiz-Vazquez
,
M. E.
Rodriguez-Garcia
, and
C. F.
Ramirez-Gutierrez
, “
Study of the optical response of oxidized porous silicon structures by thermal oxidation in air
,”
J. Mater. Sci.
57
(
24
),
11226
11241
(
2022
).
4.
C. F.
Ramirez-Gutierrez
,
J. D.
Castaño-Yepes
, and
M. E.
Rodriguez-García
, “
In situ photoacoustic characterization for porous silicon growing: Detection principles
,”
J. Appl. Phys.
119
(
18
),
185103
(
2016
).
5.
K.
Dubyk
,
T.
Nychyporuk
,
V.
Lysenko
,
K.
Termentzidis
,
G.
Castanet
,
F.
Lemoine
,
D.
Lacroix
, and
M.
Isaiev
, “
Thermal properties study of silicon nanostructures by photoacoustic techniques
,”
J. Appl. Phys.
127
(
22
),
225101
(
2020
).
6.
V.
Kuryliuk
,
O.
Tyvonovych
, and
S.
Semchuk
, “
Impact of Ge clustering on the thermal conductivity of SiGe nanowires: Atomistic simulation study
,”
Phys. Chem. Chem. Phys.
25
(
8
),
6263
6269
(
2023
).
7.
O.
Makukha
,
I.
Lysenko
, and
A.
Belarouci
, “
Liquid-modulated photothermal phenomena in porous silicon nanostructures studied by μ-Raman spectroscopy
,”
Nanomaterials
13
(
2
),
310
(
2023
).
8.
S.
Erfantalab
,
P.
Sharma
,
G.
Parish
, and
A.
Keating
, “
Thermal analysis of surface micromachined porous silicon membranes using the 3ω method: Implications for thermal sensing
,”
Appl. Therm. Eng.
222
,
119965
(
2023
).
9.
N.
Koshida
,
Thermal Properties of Nanoporous Silicon Materials
,
2nd ed
. (
Elsevier Ltd.
,
2021
).
10.
A.
Minnich
and
G.
Chen
, “
Modified effective medium formulation for the thermal conductivity of nanocomposites
,”
Appl. Phys. Lett.
91
(
7
),
073105
(
2007
).
11.
T. W.
Pfeifer
,
J. A.
Tomko
,
E.
Hoglund
,
E. A.
Scott
,
K.
Hattar
,
K.
Huynh
,
M.
Liao
,
M.
Goorsky
, and
P. E.
Hopkins
, “
Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton
,”
J. Appl. Phys.
132
(
7
),
075112
(
2022
).
12.
V. C. S.
Theja
,
V.
Karthikeyan
,
D. S.
Assi
, and
V. A. L.
Roy
, “
Insights into the classification of nanoinclusions of composites for thermoelectric applications
,”
ACS Appl. Electron. Mater.
4
(
10
),
4781
4796
(
2022
).
13.
V.
Jean
,
S.
Fumeron
,
K.
Termentzidis
,
S.
Tutashkonko
, and
D.
Lacroix
, “
Monte Carlo simulations of phonon transport in nanoporous silicon and germanium
,”
J. Appl. Phys.
115
(
2
),
024304
(
2014
).
14.
C. W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
, “
Effective thermal conductivity of particulate composites with interfacial thermal resistance
,”
J. Appl. Phys.
81
(
10
),
6692
6699
(
1997
).
15.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
(
8
),
5566
5568
(
1989
).
16.
P.
Chantrenne
,
J. L.
Barrat
,
X.
Blase
, and
J. D.
Gale
, “
An analytical model for the thermal conductivity of silicon nanostructures
,”
J. Appl. Phys.
97
(
10
),
104318
(
2005
).
17.
V.
Kuryliuk
,
O.
Nepochatyi
,
P.
Chantrenne
,
D.
Lacroix
, and
M.
Isaiev
, “
Thermal conductivity of strained silicon: Molecular dynamics insight and kinetic theory approach
,”
J. Appl. Phys.
126
(
5
),
055109
(
2019
).
18.
P.
Chantrenne
and
V.
Lysenko
, “
Thermal conductivity of interconnected silicon nanoparticles: Application to porous silicon nanostructures
,”
Phys. Rev. B
72
(
3
),
035318
(
2005
).
19.
M.
Nomura
,
R.
Anufriev
,
Z.
Zhang
,
J.
Maire
,
Y.
Guo
,
R.
Yanagisawa
, and
S.
Volz
, “
Review of thermal transport in phononic crystals
,”
Mater. Today Phys.
22
,
100613
(
2022
).
20.
S. A.
Santaló
, “
Sobre la distribución probable de corpúsculos en un cuerpo, deducida de la distribución en sus secciones y problemas análogos
,”
Rev. Unión Matemática Argentina
IX
(
5
),
145
164
(
1943
).
21.
F.
Golse
, in
Nonlinear Partial Differential Equations (Advanced C)
, edited by
X.
Cabré
and
J.
Soler
(
Springer
,
Basel, Barcelona
,
2012
), pp.
39
99
.
22.
Y.
Suzuki
,
Y.
Fujita
,
K.
Fauziah
,
T.
Nogita
,
H.
Ikeda
,
T.
Watanabe
, and
Y.
Kamakura
, in
2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD
) (
IEEE
,
2020
), pp.
15
18
.
23.
M.
Sledzinska
,
B.
Graczykowski
,
F.
Alzina
,
U.
Melia
,
K.
Termentzidis
,
D.
Lacroix
, and
C. M.
Sotomayor Torres
, “
Thermal conductivity in disordered porous nanomembranes
,”
Nanotechnology
30
(
26
),
265401
(
2019
).
24.
IBM
, “
IBM unveils world's first 2 nanometer chip technology, opening a new frontier for semiconductors
,” https://Newsroom.Ibm.Com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors (
2021
).
You do not currently have access to this content.