The operational bandwidth of resonant circuits is limited by the resonator's size, which is known as the Chu limit. This limit restricts miniaturization of antennas, as the antenna bandwidth is inversely proportional to its size. Here, we propose slow time modulation of resistive elements to engineer bandwidth of small antennas. The temporal modulation of resistance induces virtual impedance that is fully controlled by the modulation parameters. We show how the virtual impedance can be used to optimize the frequency response of a resonant circuit, leading to enhanced matching at multiple frequencies simultaneously. We experimentally verify the proposed technique, demonstrating enhancement of radiation of a broadband modulated signal radiated by a small antenna.

1.
L. J.
Chu
, “
Physical limitations of omni-directional antennas
,”
J. Appl. Phys.
19
,
1163
1175
(
1948
).
2.
H. A.
Wheeler
, “
Fundamental limitations of small antennas
,”
Proc. IRE
35
,
1479
1484
(
1947
).
3.
R. M.
Fano
, “
Theoretical limitations on the broadband matching of arbitrary impedances
,”
J. Franklin Inst.
249
,
139
154
(
1950
).
4.
R.
Hartley
, “
Oscillations in systems with non-linear reactance
,”
Bell Syst. Tech. J.
15
,
424
440
(
1936
).
5.
M.
Jacob
and
H.
Brauch
, “
Keying VLF transmitters at high speed
,”
Electronics
27
,
148
151
(
1954
).
6.
H.
Wolff
, “
High-speed frequency-shift keying of LF and VLF radio circuits
,”
IRE Trans. Commun. Syst.
5
,
29
42
(
1957
).
7.
J.
Galejs
, “
Electronic broadbanding of high-Q tuned circuits or antennas
,”
Arch. Elektr. Übertrag.
17
,
375
380
(
1963
).
8.
J.
Galejs
, “
Switching of reactive elements in high-Q antennas
,”
IEEE Trans. Commun. Syst.
11
,
254
255
(
1963
).
9.
H.
Hartley
, “
Analysis of some techniques used in modern LF-VLF radiation systems
,”
IEEE Trans. Commun. Technol.
16
,
690
700
(
1968
).
10.
H.
Li
,
A.
Mekawy
, and
A.
Alù
, “
Beyond Chu's limit with Floquet impedance matching
,”
Phys. Rev. Lett.
123
,
164102
(
2019
).
11.
A.
Mekawy
,
H.
Li
,
Y.
Radi
, and
A.
Alù
, “
Parametric enhancement of radiation from electrically small antennas
,”
Phys. Rev. Appl.
15
,
054063
(
2021
).
12.
S.
Hrabar
, “
Time-varying route to non-Foster elements
,” in
Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)
(
IEEE
,
2020
), pp.
108
109
.
13.
A.
Shlivinski
and
Y.
Hadad
, “
Beyond the Bode-Fano bound: Wideband impedance matching for short pulses using temporal switching of transmission-line parameters
,”
Phys. Rev. Lett.
121
,
204301
(
2018
).
14.
Y.
Hadad
and
A.
Shlivinski
, “
Soft temporal switching of transmission line parameters: Wave-field, energy balance, and applications
,”
IEEE Trans. Antennas Propag.
68
,
1643
1654
(
2020
).
15.
X.
Yang
,
E.
Wen
, and
D. F.
Sievenpiper
, “
Broadband time-modulated absorber beyond the Bode-Fano limit for short pulses by energy trapping
,”
Phys. Rev. Appl.
17
,
044003
(
2022
).
16.
B.
Chambers
and
A.
Tennant
, “
A smart radar absorber based on the phase-switched screen
,”
IEEE Trans. Antennas Propag.
53
,
394
403
(
2005
).
17.
X.
Wang
and
C.
Caloz
, “
Spread-spectrum selective camouflaging based on time-modulated metasurface
,”
IEEE Trans. Antennas Propag.
69
,
286
295
(
2021
).
18.
H.
Li
and
A.
Alù
, “
Temporal switching to extend the bandwidth of thin absorbers
,”
Optica
8
,
24
29
(
2021
).
19.
W.
Yao
and
Y.
Wang
, “
Direct antenna modulation—A promise for ultra-wideband (UWB) transmitting
,” in
IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535)
(
IEEE
,
2004
), Vol.
2
, pp.
1273
1276
.
20.
A.
Babakhani
,
D. B.
Rutledge
, and
A.
Hajimiri
, “
Transmitter architectures based on near-field direct antenna modulation
,”
IEEE J. Solid-State Circuits
43
,
2674
2692
(
2008
).
21.
X. J.
Xu
and
Y. E.
Wang
, “
A direct antenna modulation (dam) transmitter with a switched electrically small antenna
,” in
2010 International Workshop Antenna Technology (iWAT)
(
IEEE
,
2010
), pp.
1
4
.
22.
R.
Janaswamy
, “
Time-varying antennas for enhanced bandwidths
,” in
IEEE Antennas and Propagation Society International Symposium (APSURSI
) (
IEEE
,
2014
), pp.
621
622
.
23.
K.
Schab
,
D.
Huang
, and
J. J.
Adams
, “
Pulse characteristics of a direct antenna modulation transmitter
,”
IEEE Access
7
,
30213
30219
(
2019
).
24.
P.
Jayathurathnage
,
F.
Liu
,
M. S.
Mirmoosa
,
X.
Wang
,
R.
Fleury
, and
S. A.
Tretyakov
, “
Time-varying components for enhancing wireless transfer of power and information
,”
Phys. Rev. Appl.
16
,
014017
(
2021
).
25.
M. H.
Mostafa
,
A.
Díaz-Rubio
,
M. S.
Mirmoosa
, and
S. A.
Tretyakov
, “
Coherently time-varying metasurfaces
,”
Phys. Rev. Appl.
17
,
064048
(
2022
).
26.
Y.-S.
Zhu
and
W.-K.
Chen
, “
Unified theory of compatibility impedances
,”
IEEE Trans. Circuits Syst.
35
,
667
674
(
1988
).
27.
J.
Schoeffler
, “
Impedance transformation using lossless networks
,”
IRE Trans. Circuit Theory
8
,
131
137
(
1961
).
28.
H.
Carlin
and
B.
Yarman
, “
The double matching problem: Analytic and real frequency solutions
,”
IEEE Trans. Circuits Syst.
30
,
15
28
(
1983
).
29.
N.
Nallam
and
S.
Chatterjee
, “
Multi-band frequency transformations, matching networks and amplifiers
,”
IEEE Trans. Circuits Syst. I
60
,
1635
1647
(
2013
).
30.
A.
Lehtovuori
,
R.
Valkonen
, and
M.
Valtonen
, “
Dual-band matching of arbitrary loads
,”
Microwave Opt. Technol. Lett.
56
,
2958
(
2014
).
31.
X.
Wang
, “
Surface-impedance engineering for advanced wave transformations
,” Doctoral thesis (
Department of Electronics and Nanoengineering, Aalto University
,
2020
).

Supplementary Material

You do not currently have access to this content.