Ag2Se is a potentially useful material with interesting magnetoresistive and thermoelectric properties. In several recent studies, the thermoelectric figure of merit (zT) of Ag2Se has been shown to approach 1 near 380 K (i.e., about 25 K below its superionic transition temperature). However, what plagues the use of Ag2Se in real life applications is its sample dependence and very poor reproducibility. In a recent work, it is clearly established that the root cause of this is Ag migration during high-temperature sintering or melting. Here, we show that high-density Ag2Se samples with high and reproducible zT (0.92 at 370 K) can be prepared by simple all-room-temperature techniques. The ease of sample preparation and high zT along with excellent reproducibility make Ag2Se a promising material for near-room-temperature applications.

1.
J.
He
and
T. M.
Tritt
, “
Advances in thermoelectric materials research: Looking back and moving forward
,”
Science
357
,
eaak9997
(
2017
).
2.
Z.
Han
,
J.-W.
Li
,
F.
Jiang
,
J.
Xia
,
B.-P.
Zhang
,
J.-F.
Li
, and
W.
Liu
, “
Room-temperature thermoelectric materials: Challenges and a new paradigm
,”
J. Materiomics
8
,
427
436
(
2022
).
3.
I. T.
Witting
,
T. C.
Chasapis
,
F.
Ricci
,
M.
Peters
,
N. A.
Heinz
,
G.
Hautier
, and
G. J.
Snyder
, “
The thermoelectric properties of bismuth telluride
,”
Adv. Electron. Mater.
5
,
1800904
(
2019
).
4.
B.
Zhu
,
X.
Liu
,
Q.
Wang
,
Y.
Qiu
,
Z.
Shu
,
Z.
Guo
,
Y.
Tong
,
J.
Cui
,
M.
Gu
, and
J.
He
, “
Realizing record high performance in n-type Bi2Te3-based thermoelectric materials
,”
Energy Environ. Sci.
13
,
2106
2114
(
2020
).
5.
P.
Jood
,
R.
Chetty
, and
M.
Ohta
, “
Structural stability enables high thermoelectric performance in room temperature Ag2Se
,”
J. Mater. Chem. A
8
,
13024
13037
(
2020
).
6.
M.
Jin
,
J.
Liang
,
P.
Qiu
,
H.
Huang
,
Z.
Yue
,
L.
Zhou
,
R.
Li
,
L.
Chen
, and
X.
Shi
, “
Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method
,”
J. Phys. Chem. Lett.
12
,
8246
8255
(
2021
).
7.
S.
Huang
,
T.-R.
Wei
,
H.
Chen
,
J.
Xiao
,
M.
Zhu
,
K.
Zhao
, and
X.
Shi
, “
Thermoelectric Ag2Se: Imperfection, homogeneity, and reproducibility
,”
ACS Appl. Mater. Interfaces
13
,
60192
60199
(
2021
).
8.
J.
Chen
,
Q.
Sun
,
D.
Bao
,
T.
Liu
,
W.-D.
Liu
,
C.
Liu
,
J.
Tang
,
D.
Zhou
,
L.
Yang
, and
Z.-G.
Chen
, “
Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se
,”
ACS Appl. Mater. Interfaces
12
,
51523
51529
(
2020
).
9.
P.
Wang
,
J.-L.
Chen
,
Q.
Zhou
,
Y. T.
Liao
,
Y.
Peng
,
J. S.
Liang
, and
L.
Miao
, “
Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects
,”
Appl. Phys. Lett.
120
,
193902
(
2022
).
10.
D.
Yang
,
X.
Su
,
F.
Meng
,
S.
Wang
,
Y.
Yan
,
J.
Yang
,
J.
He
,
Q.
Zhang
,
C.
Uher
,
M. G.
Kanatzidis
et al, “
Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction
,”
J. Mater. Chem. A
5
,
23243
23251
(
2017
).
11.
R.
Xu
,
A.
Husmann
,
T.
Rosenbaum
,
M.-L.
Saboungi
,
J.
Enderby
, and
P.
Littlewood
, “
Large magnetoresistance in non-magnetic silver chalcogenides
,”
Nature
390
,
57
60
(
1997
).
12.
F.
Yang
,
S.
Xiong
,
Z.
Xia
,
F.
Liu
,
C.
Han
, and
D.
Zhang
, “
Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect
,”
Semicond. Sci. Technol.
27
,
125017
(
2012
).
13.
M.
Jafarov
, “
On the nature of charge carrier scattering in Ag2Se at low temperatures
,”
Semiconductors
44
,
1280
1284
(
2010
).
14.
W.
Mi
,
P.
Qiu
,
T.
Zhang
,
Y.
Lv
,
X.
Shi
, and
L.
Chen
, “
Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions
,”
Appl. Phys. Lett.
104
,
133903
(
2014
).
15.
T. P.
Bailey
and
C.
Uher
, “
Potential for superionic conductors in thermoelectric applications
,”
Curr. Opin. Green Sustainable Chem.
4
,
58
63
(
2017
).
16.
K.
Zhao
,
P.
Qiu
,
X.
Shi
, and
L.
Chen
, “
Recent advances in liquid-like thermoelectric materials
,”
Adv. Funct. Mater.
30
,
1903867
(
2020
).
17.
P.
Qiu
,
X.
Shi
, and
L.
Chen
, “
Cu-based thermoelectric materials
,”
Energy Storage Mater.
3
,
85
97
(
2016
).
18.
P.
Qiu
,
M. T.
Agne
,
Y.
Liu
,
Y.
Zhu
,
H.
Chen
,
T.
Mao
,
J.
Yang
,
W.
Zhang
,
S. M.
Haile
,
W. G.
Zeier
et al, “
Suppression of atom motion and metal deposition in mixed ionic electronic conductors
,”
Nat. Commun.
9
,
2910
(
2018
).
19.
T.
Mao
,
P.
Qiu
,
X.
Du
,
P.
Hu
,
K.
Zhao
,
J.
Xiao
,
X.
Shi
, and
L.
Chen
, “
Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions
,”
Adv. Funct. Mater.
30
,
1908315
(
2020
).
20.
N.
Jakhar
,
N.
Bisht
,
A.
Katre
, and
S.
Singh
, “
Synergistic approach toward a reproducible high zt in n-type and p-type superionic thermoelectric Ag2Te
,”
ACS Appl. Mater. Interfaces
14
,
53916
(
2022
).
21.
J.
Conn
and
R.
Taylor
, “
Thermoelectric and crystallographic properties of Ag2Se
,”
J. Electrochem. Soc.
107
,
977
(
1960
).
22.
M.
Ferhat
and
J.
Nagao
, “
Thermoelectric and transport properties of β-Ag2Se compounds
,”
J. Appl. Phys.
88
,
813
816
(
2000
).
23.
F.
Aliev
,
M.
Jafarov
, and
V.
Eminova
, “
Thermoelectric figure of merit of Ag2Se with Ag and Se excess
,”
Semiconductors
43
,
977
979
(
2009
).
24.
H.
Duan
,
Y.
Li
,
K.
Zhao
,
P.
Qiu
,
X.
Shi
, and
L.
Chen
, “
Ultra-fast synthesis for Ag2Se and CuAgSe thermoelectric materials
,”
JOM
68
,
2659
2665
(
2016
).
25.
K. H.
Lim
,
K. W.
Wong
,
Y.
Liu
,
Y.
Zhang
,
D.
Cadavid
,
A.
Cabot
, and
K. M.
Ng
, “
Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material
,”
J. Mater. Chem. C
7
,
2646
2652
(
2019
).
26.
R.
Simon
,
R.
Bourke
, and
E.
Lougher
, “
Preparation and thermoelectric properties of β-Ag2Se
,”
Adv. Energy Convers.
3
,
481
505
(
1963
).
27.
H.
Hu
,
Y.
Wang
,
C.
Fu
,
X.
Zhao
, and
T.
Zhu
, “
Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility
,”
Innovation
3
,
100341
(
2022
).
28.
H.
Chen
,
T.-R.
Wei
,
K.
Zhao
,
P.
Qiu
,
L.
Chen
,
J.
He
, and
X.
Shi
, “
Room-temperature plastic inorganic semiconductors for flexible and deformable electronics
,”
InfoMat
3
,
22
35
(
2021
).
29.
X.
Shi
,
H.
Chen
,
F.
Hao
,
R.
Liu
,
T.
Wang
,
P.
Qiu
,
U.
Burkhardt
,
Y.
Grin
, and
L.
Chen
, “
Room-temperature ductile inorganic semiconductor
,”
Nat. Mater.
17
,
421
426
(
2018
).
30.
R.
Dalven
and
R.
Gill
, “
Energy gap in β-Ag2Se
,”
Phys. Rev.
159
,
645
(
1967
).
31.
J.
Yu
and
H.
Yun
, “
Reinvestigation of the low-temperature form of Ag2Se (naumannite) based on single-crystal data
,”
Acta Crystallogr. E
67
,
i45
(
2011
).
32.
H.
Billetter
and
U.
Ruschewitz
, “
Structural phase transitions in Ag2Se (naumannite)
,”
Z. Anorg. Allg. Chem.
634
,
241
246
(
2008
).
33.
F.
Grønvold
,
S.
Stølen
, and
Y.
Semenov
, “
Heat capacity and thermodynamic properties of silver (I) selenide, oP-Ag2Se from 300 to 406 K and of cI-Ag2Se from 406 to 900 K: Transitional behavior and formation properties
,”
Thermochim. Acta
399
,
213
224
(
2003
).
34.
A.
Epstein
,
S.
Kulifay
, and
R.
Stearns
, “
Energy gap of β silver selenide
,”
Nature
203
,
856
856
(
1964
).
35.
H. W.
Henkels
, “
Thermoelectric power and mobility of carriers in selenium
,”
Phys. Rev.
77
,
734
(
1950
).
36.
M.
Saleemi
,
M. S.
Toprak
,
S.
Li
,
M.
Johnsson
, and
M.
Muhammed
, “
Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)
,”
J. Mater. Chem.
22
,
725
730
(
2012
).
37.
S.
Roychowdhury
,
T.
Ghosh
,
R.
Arora
,
M.
Samanta
,
L.
Xie
,
N. K.
Singh
,
A.
Soni
,
J.
He
,
U. V.
Waghmare
, and
K.
Biswas
, “
Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2
,”
Science
371
,
722
727
(
2021
).
38.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
High-performance bulk thermoelectrics with all-scale hierarchical architectures
,”
Nature
489
,
414
418
(
2012
).
39.
D.
Li
,
J.
Zhang
,
J.
Li
,
J.
Zhang
, and
X.
Qin
, “
High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method
,”
Mater. Chem. Front.
4
,
875
880
(
2020
).
40.
T.
Day
,
F.
Drymiotis
,
T.
Zhang
,
D.
Rhodes
,
X.
Shi
,
L.
Chen
, and
G. J.
Snyder
, “
Evaluating the potential for high thermoelectric efficiency of silver selenide
,”
J. Mater. Chem. C
1
,
7568
7573
(
2013
).
41.
H.
Naithani
and
T.
Dasgupta
, “
Critical analysis of single band modeling of thermoelectric materials
,”
ACS Appl. Energy Mater.
3
,
2200
2213
(
2020
).
42.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
, “
Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states
,”
Science
321
,
554
557
(
2008
).
43.
Z.
Fan
,
H.
Wang
,
Y.
Wu
,
X.
Liu
, and
Z.
Lu
, “
Thermoelectric high-entropy alloys with low lattice thermal conductivity
,”
RSC Adv.
6
,
52164
52170
(
2016
).
44.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
, “
Convergence of electronic bands for high performance bulk thermoelectrics
,”
Nature
473
,
66
69
(
2011
).
45.
J.
Zide
,
D.
Vashaee
,
Z.
Bian
,
G.
Zeng
,
J.
Bowers
,
A.
Shakouri
, and
A.
Gossard
, “
Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19 as superlattices
,”
Phys. Rev. B
74
,
205335
(
2006
).
46.
S. V.
Faleev
and
F.
Léonard
, “
Theory of enhancement of thermoelectric properties of materials with nanoinclusions
,”
Phys. Rev. B
77
,
214304
(
2008
).
47.
K.-I.
Sasaki
,
M.
Yamamoto
,
S.
Murakami
,
R.
Saito
,
M. S.
Dresselhaus
,
K.
Takai
,
T.
Mori
,
T.
Enoki
, and
K.
Wakabayashi
, “
Kohn anomalies in graphene nanoribbons
,”
Phys. Rev. B
80
,
155450
(
2009
).
48.
M. G.
Kanatzidis
, “
Nanostructured thermoelectrics: The new paradigm?
,”
Chem. Mater.
22
,
648
659
(
2010
).
49.
D. M.
Rowe
,
CRC Handbook of Thermoelectrics
(
CRC Press
,
2018
).
50.
H.
Liu
,
X.
Shi
,
F.
Xu
,
L.
Zhang
,
W.
Zhang
,
L.
Chen
,
Q.
Li
,
C.
Uher
,
T.
Day
, and
G. J.
Snyder
, “
Copper ion liquid-like thermoelectrics
,”
Nat. Mater.
11
,
422
425
(
2012
).
51.
Y.
He
,
T.
Day
,
T.
Zhang
,
H.
Liu
,
X.
Shi
,
L.
Chen
, and
G. J.
Snyder
, “
High thermoelectric performance in non-toxic earth-abundant copper sulfide
,”
Adv. Mater.
26
,
3974
3978
(
2014
).
52.
F.
Aliev
and
V.
Eminova
, “
Dependence of the spectra of charge carriers on the concentration of defects in silver telluride
,”
Phys. Solid State
57
,
1325
1333
(
2015
).
53.
J. R.
Sootsman
,
D. Y.
Chung
, and
M. G.
Kanatzidis
, “
New and old concepts in thermoelectric materials
,”
Angew. Chem., Int. Ed.
48
,
8616
8639
(
2009
).
54.
P.
Junod
,
H.
Hediger
,
B.
Kilchör
, and
J.
Wullschleger
, “
Metal-non-metal transition in silver chalcogenides
,”
Philos. Mag.
36
,
941
958
(
1977
).
55.
C.
Xiao
,
J.
Xu
,
K.
Li
,
J.
Feng
,
J.
Yang
, and
Y.
Xie
, “
Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance
,”
J. Am. Chem. Soc.
134
,
4287
4293
(
2012
).
56.
H. M. H.
Miki
, “
Superlattice formation and phase transition in silver selenide
,”
Jpn. J. Appl. Phys., Part 1
30
,
1765
(
1991
).
57.
A.
Sahu
,
D.
Braga
,
O.
Waser
,
M. S.
Kang
,
D.
Deng
, and
D. J.
Norris
, “
Solid-phase flexibility in Ag2Se semiconductor nanocrystals
,”
Nano Lett.
14
,
115
121
(
2014
).
58.
J.
Wang
,
W.
Fan
,
J.
Yang
,
Z.
Da
,
X.
Yang
,
K.
Chen
,
H.
Yu
, and
X.
Cheng
, “
Tetragonal–orthorhombic–cubic phase transitions in Ag2Se nanocrystals
,”
Chem. Mater.
26
,
5647
5653
(
2014
).
59.
C.-L.
Zhang
,
F.
Schindler
,
H.
Liu
,
T.-R.
Chang
,
S.-Y.
Xu
,
G.
Chang
,
W.
Hua
,
H.
Jiang
,
Z.
Yuan
,
J.
Sun
et al, “
Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β-Ag2Se
,”
Phys. Rev. B
96
,
165148
(
2017
).
60.
J.
Kim
,
A.
Hwang
,
S.-H.
Lee
,
S.-H.
Jhi
,
S.
Lee
,
Y. C.
Park
,
S.-I.
Kim
,
H.-S.
Kim
,
Y.-J.
Doh
,
J.
Kim
et al, “
Quantum electronic transport of topological surface states in β-Ag2Se nanowire
,”
ACS Nano
10
,
3936
3943
(
2016
).
61.
J.
Kim
,
B.-K.
Kim
,
H.-S.
Kim
,
A.
Hwang
,
B.
Kim
, and
Y.-J.
Doh
, “
Macroscopic quantum tunneling in superconducting junctions of β-Ag2Se topological insulator nanowire
,”
Nano Lett.
17
,
6997
7002
(
2017
).
62.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
,”
Nature
508
,
373
377
(
2014
).
63.
K.
Biswas
,
J.
He
,
Q.
Zhang
,
G.
Wang
,
C.
Uher
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Investigation of the thermoelectric properties of the PbTe-SrTe system
,”
MRS Proc.
1267
,
187
192
(
2010
).
64.
C.
Lee
,
Y.-H.
Park
, and
H.
Hashimoto
, “
Effect of nonstoichiometry on the thermoelectric properties of a Ag2Se alloy prepared by a mechanical alloying process
,”
J. Appl. Phys.
101
,
024920
(
2007
).
65.
S. Y.
Tee
,
X. Y.
Tan
,
X.
Wang
,
C. J. J.
Lee
,
K. Y.
Win
,
X. P.
Ni
,
S. L.
Teo
,
D. H. L.
Seng
,
Y.
Tanaka
, and
M.-Y.
Han
, “
Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature
,”
Inorg. Chem.
61
,
6451
6458
(
2022
).
66.
J.
Chen
,
H.
Yuan
,
Y.-K.
Zhu
,
K.
Zheng
,
Z.-H.
Ge
,
J.
Tang
,
D.
Zhou
,
L.
Yang
, and
Z.-G.
Chen
, “
Ternary Ag2Se1–xTex: A near-room-temperature thermoelectric material with a potentially high figure of merit
,”
Inorg. Chem.
60
,
14165
14173
(
2021
).
67.
S.
Singh
,
K.
Hirata
,
D.
Byeon
,
T.
Matsunaga
,
O.
Muthusamy
,
S.
Ghodke
,
M.
Adachi
,
Y.
Yamamoto
,
M.
Matsunami
, and
T.
Takeuchi
, “
Investigation of thermoelectric properties of Ag2SxSe1-x (x = 0.0, 0.2 and 0.4)
,”
J. Electron. Mater.
49
,
2846
2854
(
2020
).
68.
S. S.
Li
, “
Scattering mechanisms and carrier mobilities in semiconductors
,” in
Semiconductor Physical Electronics
(
Springer
,
2006
), pp.
211
245
.
69.
M.
Jafarov
,
F.
Aliev
,
R.
Hasanova
, and
A.
Saddinova
, “
Role of intrinsic defects in splitting the energy spectra of charge carriers in Ag2Te
,”
Semiconductors
46
,
861
865
(
2012
).
70.
B.
Jabar
,
X.
Qin
,
A.
Mansoor
,
H.
Ming
,
L.
Huang
,
M. H.
Danish
,
J.
Zhang
,
D.
Li
,
C.
Zhu
,
H.
Xin
et al, “
Enhanced power factor and thermoelectric performance for n-type Bi2Te2.7Se0.3 based composites incorporated with 3D topological insulator nanoinclusions
,”
Nano Energy
80
,
105512
(
2021
).
71.
M.
Hong
,
T. C.
Chasapis
,
Z.-G.
Chen
,
L.
Yang
,
M. G.
Kanatzidis
,
G. J.
Snyder
, and
J.
Zou
, “
n-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings
,”
ACS Nano
10
,
4719
4727
(
2016
).
72.
L.
Peng
,
S.
Yang
,
T.-R.
Wei
,
P.
Qiu
,
J.
Yang
,
Z.
Zhang
,
X.
Shi
, and
L.
Chen
, “
Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors
,”
J. Materiomics
8
,
656
661
(
2022
).

Supplementary Material

You do not currently have access to this content.