In recent years, GaSb-on-Si direct heteroepitaxy has been highly desirable to extend the operating wavelength range into mid-infrared and high-mobility applications, such as free-space communications, gas sensing, and hyperspectral imaging. High-quality GaSb films on Si remain challenging due to the high density of defects generated during the growth. For this purpose, epitaxial GaSb films were grown by molecular beam epitaxy on on-axis Si(001). Due to the large lattice mismatch (12.2%) between GaSb and Si, here, we proposed a radical design and growth strategy with the primary objective of achieving the annihilation of antiphase boundaries (APBs) and the reduction of threading dislocation density (TDD). Benefitting from a V-grooved Si hollow structure, we demonstrated the growth of emerging-APB-free GaSb film on Si(001) with low mosaicity. Moreover, by introducing InGaSb/GaSb dislocation filtering layers, the atomically flat surface root mean square roughness is improved to 0.34 (on Si) and 0.14 nm (on GaAs/Si). Moreover, the corresponding TDD can be reduced to 3.5 × 107 and 2 × 107 cm−2, respectively, one order of magnitude lower than the minimum value found in the literature. These reported results are a powerful lever to improve the overall quality of epitaxial Si-based antimonide, which is of high interest for various devices and critical applications, such as laser diodes, photo-detectors, and solar cells.

1.
S. M.
Sze
,
Physics of Semiconductor Devices
(
John Wiley and Sons
,
New York, USA
,
1981
).
2.
M.
Rio Calvo
,
L.
Monge Bartolomé
,
M.
Bahriz
,
G.
Boissier
,
L.
Cerutti
,
J.-B.
Rodriguez
, and
E.
Tournié
, “
Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon
,”
Optica
7
(
4
),
263
(
2020
).
3.
M.
Hoppe
,
C.
Aßmann
,
S.
Schmidtmann
,
T.
Milde
,
M.
Honsberg
,
T.
Schanze
, and
J.
Sacher
, “
GaSb-based digital distributed feedback filter laser diodes for gas sensing applications in the mid-infrared region
,”
J. Opt. Soc. Am. B
38
(
8
),
B1
(
2021
).
4.
E.
Tournié
,
L.
Monge Bartolome
,
M.
Rio Calvo
,
Z.
Loghmari
,
D. A.
Díaz-Thomas
,
R.
Teissier
,
A. N.
Baranov
,
L.
Cerutti
, and
J.-B.
Rodriguez
, “
Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates
,”
Light: Sci. Appl.
11
(
1
),
165
(
2022
).
5.
B. R.
Bennett
,
R.
Magno
,
J. B.
Boos
,
W.
Kruppa
, and
M. G.
Ancona
, “
Antimonide-based compound semiconductors for electronic devices: A review
,”
Solid-State Electron.
49
(
12
),
1875
1895
(
2005
).
6.
C.
Liu
,
Y.
Li
, and
Y.
Zeng
, “
Progress in Antimonide Based III-V Compound Semiconductors and Devices
,”
Engineering
02
(
08
),
617
624
(
2010
).
7.
R.
Taalat
,
J.-B.
Rodriguez
,
M.
Delmas
, and
P.
Christol
, “
Influence of the period thickness and composition on the electro-optical properties of type-II InAs/GaSb midwave infrared superlattice photodetectors
,”
J. Phys. D: Appl. Phys.
47
(
1
),
015101
(
2014
).
8.
J. M.
Fastenau
,
D.
Lubyshev
,
S. A.
Nelson
,
M.
Kattner
,
P.
Frey
,
M.
Fetters
,
J.
Zeng
,
A. W.
Liu
,
A. O.
Morgan
,
S. A.
Edwards
,
R.
Dennis
,
K.
Beech
,
D.
Burrows
,
K.
Patnaude
,
R.
Faska
,
J.
Bundas
,
A.
Reisinger
,
M.
Sundaram
, and
M. J.
Furlong
, in
Infrared Technology and Applications XLV
, edited by
G. F.
Fulop
,
C. M.
Hanson
, and
B. F.
Andresen
(
SPIE
,
Baltimore, USA
,
2019
), p.
22
.
9.
J.
Tournet
,
S.
Parola
,
A.
Vauthelin
,
D.
Montesdeoca Cardenes
,
S.
Soresi
,
F.
Martinez
,
Q.
Lu
,
Y.
Cuminal
,
P. J.
Carrington
,
J.
Décobert
,
A.
Krier
,
Y.
Rouillard
, and
E.
Tournié
, “
GaSb-based solar cells for multi-junction integration on Si substrates
,”
Sol. Energy Mater. Sol. Cells
191
,
444
450
(
2019
).
10.
J.
Kret
,
J.
Tournet
,
S.
Parola
,
F.
Martinez
,
D.
Chemisana
,
R.
Morin
,
M.
de la Mata
,
N.
Fernández-Delgado
,
A. A.
Khan
,
S. I.
Molina
,
Y.
Rouillard
,
E.
Tournié
, and
Y.
Cuminal
, “
Investigation of AlInAsSb/GaSb tandem cells—A first step towards GaSb-based multi-junction solar cells
,”
Sol. Energy Mater Sol. Cells
219
,
110795
(
2021
).
11.
D.
Jung
,
P. G.
Callahan
, and
B.
Shin
, “
Low threading dislocation density GaAs growth on on-axis GaP/Si (001)
,”
J. Appl. Phys.
122
(
22
),
225703
(
2017
).
12.
J.
Norman
,
M. J.
Kennedy
,
J.
Selvidge
,
Q.
Li
,
Y.
Wan
,
A. Y.
Liu
,
P. G.
Callahan
,
M. P.
Echlin
,
T. M.
Pollock
,
K. M.
Lau
,
A. C.
Gossard
, and
J. E.
Bowers
, “
Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si
,”
Opt. Express
25
(
4
),
3927
(
2017
).
13.
B.
Shi
,
L.
Wang
,
A. A.
Taylor
,
S.
Suran Brunelli
,
H.
Zhao
,
B.
Song
, and
J.
Klamkin
, “
MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications
,”
Appl. Phys. Lett.
114
(
17
),
172102
(
2019
).
14.
W. Q.
Wei
,
J. Z.
Huang
,
Z.
Ji
,
D.
Han
,
B.
Yang
,
J. J.
Chen
,
J.
Qin
,
Y.
Cui
,
Z.
Wang
,
T.
Wang
, and
J. J.
Zhang
, “
Reliable InAs quantum dot lasers grown on patterned Si (001) substrate with embedded hollow structures assisted thermal stress relaxation
,”
J. Phys. D: Appl. Phys.
55
(
40
),
405105
(
2022
).
15.
R. J.
Malik
, “
Molecular-beam epitaxy of GaSb/AlSb optical device layers on Si(100)
,”
J. Appl. Phys.
59
(
11
),
3909
3911
(
1986
).
16.
K.
Akahane
,
N.
Yamamoto
,
S.
Gozu
,
A.
Ueta
, and
N.
Ohtani
, “
Initial growth stage of GaSb on Si(001) substrates with AlSb initiation layers
,”
J. Cryst. Growth
283
(
3–4
),
297
302
(
2005
).
17.
S. H.
Vajargah
,
S.
Ghanad-Tavakoli
,
J. S.
Preston
,
R. N.
Kleiman
, and
G. A.
Botton
, “
Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer
,”
J. Appl. Phys.
114
(
11
),
113101
(
2013
).
18.
J. B.
Rodriguez
,
K.
Madiomanana
,
L.
Cerutti
,
A.
Castellano
, and
E.
Tournié
, “
X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates
,”
J. Cryst. Growth
439
,
33
39
(
2016
).
19.
J. B.
Rodriguez
,
L.
Cerutti
,
G.
Patriarche
,
L.
Largeau
,
K.
Madiomanana
, and
E.
Tournié
, “
Characterization of antimonide based material grown by molecular epitaxy on vicinal silicon substrates via a low temperature AlSb nucleation layer
,”
J. Cryst. Growth
477
,
65
71
(
2017
).
20.
T.
Cerba
,
M.
Martin
,
J.
Moeyaert
,
S.
David
,
J. L.
Rouviere
,
L.
Cerutti
,
R.
Alcotte
,
J. B.
Rodriguez
,
M.
Bawedin
,
H.
Boutry
,
F.
Bassani
,
Y.
Bogumilowicz
,
P.
Gergaud
,
E.
Tournié
, and
T.
Baron
, “
Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition
,”
Thin Solid Films
645
,
5
9
(
2018
).
21.
Y.
Wan
,
Q.
Li
,
Y.
Geng
,
B.
Shi
, and
K. M.
Lau
, “
InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band
,”
Appl. Phys. Lett.
107
(
8
),
081106
(
2015
).
22.
W. Q.
Wei
,
J.
Wang
,
B.
Zhang
,
J.
Zhang
,
H.
Wang
,
Q.
Feng
,
H.
Xu
,
T.
Wang
, and
J. J.
Zhang
, “
InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm
,”
Appl. Phys. Lett.
113
(
5
),
053107
(
2018
).
23.
B.
Shi
,
B.
Song
,
A. A.
Taylor
,
S. S.
Brunelli
, and
J.
Klamkin
, “
Selective area heteroepitaxy of low dislocation density antiphase boundary free GaAs microridges on flat-bottom (001) Si for integrated silicon photonics
,”
Appl. Phys. Lett.
118
(
12
),
122106
(
2021
).
24.
M.
Baryshnikova
,
Y.
Mols
,
Y.
Ishii
,
R.
Alcotte
,
H.
Han
,
T.
Hantschel
,
O.
Richard
,
M.
Pantouvaki
,
J.
Van Campenhout
,
D.
Van Thourhout
,
R.
Langer
, and
B.
Kunert
, “
Nano-ridge engineering of GaSb for the integration of InAs/GaSb heterostructures on 300 mm (001) Si
,”
Crystals
10
(
4
),
330
(
2020
).
25.
Q.
Li
,
B.
Lai
, and
K. M.
Lau
, “
Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer
,”
Appl. Phys. Lett.
111
(
17
),
172103
(
2017
).
26.
D. H.
Nguyen
,
J.
Park
,
Y. K.
Noh
,
M. D.
Kim
,
D.
Lee
, and
J. E.
Oh
, “
Strong photoluminescence at 1.53 μm from GaSb/AlGaSb multiple quantum wells grown on Si substrate
,”
Appl. Phys. Lett.
95
(
6
),
061910
(
2009
).
27.
Y. K.
Noh
, “
Growth of low defect AlGaSb films on Si (100) using AlSb and InSb quantum dots intermediate layers
,”
J. Cryst. Growth
323
(
1
),
405
408
(
2011
).
28.
U.
Serincan
and
B.
Arpapay
, “
Structural and optical characterization of GaSb on Si (001) grown by molecular beam epitaxy
,”
Semicond. Sci. Technol.
34
(
3
),
035013
(
2019
).
29.
J. Z.
Huang
,
W. Q.
Wei
,
J. J.
Chen
,
Z.
Wang
,
T.
Wang
, and
J. J.
Zhang
, “
P-doped 1300 nm InAs/GaAs quantum dot lasers directly grown on an SOI substrate
,”
Opt. Lett.
46
(
21
),
5525
(
2021
).
30.
J. Z.
Li
,
J.
Bai
,
J.-S.
Park
,
B.
Adekore
,
K.
Fox
,
M.
Carroll
,
A.
Lochtefeld
, and
Z.
Shellenbarger
, “
Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping
,”
Appl. Phys. Lett.
91
(
2
),
021114
(
2007
).
31.
W.
Jakowetz
,
W.
Rühle
,
K.
Breuninger
, and
M.
Pilkuhn
, “
Luminescence and photoconductivity of undoped p-GaSb
,”
Phys. Status Solidi A
12
(
1
),
169
174
(
1972
).
32.
D.
Jung
,
J.
Norman
,
M. J.
Kennedy
,
C.
Shang
,
B.
Shin
,
Y.
Wan
,
A. C.
Gossard
, and
J. E.
Bowers
, “
High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si
,”
Appl. Phys. Lett.
111
(
12
),
122107
(
2017
).
33.
M. T. H.
Ha
,
S. H.
Huynh
,
H. B.
Do
,
C. T.
Lee
,
Q. H.
Luc
, and
E. Y.
Chang
, “
The effect of a Sb and Ga intermediate layer on the interfacial layer properties of epitaxial GaSb on GaAs grown by metalorganic chemical vapor deposition
,”
Thin Solid Films
669
,
430
435
(
2019
).
34.
V. M.
Kaganer
,
R.
Köhler
,
M.
Schmidbauer
,
R.
Opitz
, and
B.
Jenichen
, “
X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures
,”
Phys. Rev. B
55
(
3
),
1793
1810
(
1997
).
35.
C. J. K.
Richardson
,
L.
He
, and
S.
Kanakaraju
, “
Metamorphic growth of III-V semiconductor bicrystals
,”
J. Vac. Sci. Technol. B
29
(
3
),
03C126
(
2011
).

Supplementary Material

You do not currently have access to this content.