Graphene/SiC/graphene photodetectors were fabricated by epitaxial graphene prepared on semi-insulated 4H-SiC (0001) using the ultra-high vacuum high-temperature thermal decomposition method. The device exhibits a maximum responsivity of 0.01 A/W, a 103 UV–visible rejection ratio, and a high detectivity of 1.34 × 1012 Jones with a ultra-low saturation dark current of 3 × 10−13 A. Interfacial quantum states were adopted at graphene/4H-SiC heterojunction for tuning the Schottky barrier by reverse bias. The extracted Schottky barrier heights decrease from 0.91 to 0.81 eV with bias due to the upward shift of the charge-doped graphene's Fermi level. The peak responsivity of the detector is tuned from 260 to 300 nm, which indicates SiC photogenerated carriers are released from the interfacial quantum states by applied bias. More carriers transit over the Schottky barrier so that the photodetectors achieve high photoelectric conversion.

1.
N. M.
Peres
, “
Colloquium: The transport properties of graphene: An introduction
,”
Rev. Mod. Phys.
82
,
2673
(
2010
).
2.
K. F.
Mak
,
L.
Ju
,
F.
Wang
, and
T. F.
Heinz
, “
Optical spectroscopy of graphene: From the far infrared to the ultraviolet
,”
Solid State Commun.
152
,
1341
1349
(
2012
).
3.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
355
(
2008
).
4.
A. A.
Balandin
, “
Thermal properties of graphene and nanostructured carbon materials
,”
Nat. Mater.
10
,
569
581
(
2011
).
5.
Z.
Ni
,
W.
Chen
,
X.
Fan
,
J.
Kuo
,
T.
Yu
,
A.
Wee
, and
Z.
Shen
, “
Raman spectroscopy of epitaxial graphene on a SiC substrate
,”
Phys. Rev. B
77
,
115416
(
2008
).
6.
S.
Tang
,
W.
Wu
,
X.
Xie
,
X.
Li
, and
J.
Gu
, “
Band gap opening of bilayer graphene by graphene oxide support doping
,”
RSC Adv.
7
,
9862
9871
(
2017
).
7.
M.
Hildebrand
,
F.
Abualnaja
,
Z.
Makwana
, and
N. M.
Harrison
, “
Strain engineering of adsorbate self-assembly on graphene for band gap tuning
,”
J. Phys. Chem. C
123
,
4475
4482
(
2019
).
8.
D. Q.
Khoa
,
C. V.
Nguyen
,
L. M.
Bui
,
H. V.
Phuc
,
B. D.
Hoi
,
N. V.
Hieu
,
V. Q.
Nha
,
N.
Huynh
,
L. C.
Nhan
, and
N. N.
Hieu
, “
Opening a band gap in graphene by C–C bond alternation: A tight binding approach
,”
Mater. Res. Express
6
,
045605
(
2019
).
9.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D-e
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
10.
D.
Wang
,
A. E. L.
Allcca
,
T.-F.
Chung
,
A. V.
Kildishev
,
Y. P.
Chen
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Enhancing the graphene photocurrent using surface plasmons and a pn junction
,”
Light: Sci. Appl.
9
,
1
10
(
2020
).
11.
L.
Guo
,
Q.
Zhang
, and
K. S.
Chan
, “
A dual-gate field-effect transistor in graphene heterojunctions
,”
Superlattices Microst.
150
,
106778
(
2021
).
12.
A.
Levi
,
M.
Kirshner
,
O.
Sinai
,
E.
Peretz
,
O.
Meshulam
,
A.
Ghosh
,
N.
Gotlib
,
C.
Stern
,
S.
Yuan
, and
F.
Xia
, “
Graphene Schottky varactor diodes for high-performance photodetection
,”
ACS Photonics
6
,
1910
1915
(
2019
).
13.
J.
Warbinek
,
D.
Leimbach
,
D.
Lu
,
K.
Wendt
,
D.
Pegg
,
A.
Yurgens
,
D.
Hanstorp
, and
J.
Welander
, “
A graphene-based neutral particle detector
,”
Appl. Phys. Lett.
114
,
061902
(
2019
).
14.
J. E.
Thompson
,
D.
Smalley
, and
M.
Ishigami
, “
Solar-blind ultraviolet photodetectors based on vertical graphene-hexagonal boron nitride heterostructures
,”
MRS Adv.
5
,
1993
2002
(
2020
).
15.
M.
Zare
,
S.
Safa
,
R.
Azimirad
, and
S.
Mokhtari
, “
Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector
,”
J. Mater. Sci.: Mater. Electron.
28
,
6919
6927
(
2017
).
16.
S.
Liu
,
B.
Li
,
H.
Kan
,
M.-Y.
Li
,
B.
Xie
,
S.
Jiang
, and
X.
Zhu
, “
Enhanced sensitivity and response speed of graphene oxide/ZnO nanorods photodetector fabricated by introducing graphene oxide in seed layer
,”
J. Mater. Sci.: Mater. Electron.
28
,
15891
15898
(
2017
).
17.
K.
Xu
,
C.
Xu
,
Y.
Xie
,
J.
Deng
,
Y.
Zhu
,
W.
Guo
,
M.
Xun
,
K. B.
Teo
,
H.
Chen
, and
J.
Sun
, “
Graphene GaN-based Schottky ultraviolet detectors
,”
IEEE Trans. Electron Devices
62
,
2802
2808
(
2015
).
18.
T. J.
Anderson
,
K. D.
Hobart
,
J. D.
Greenlee
,
D. I.
Shahin
,
A. D.
Koehler
,
M. J.
Tadjer
,
E. A.
Imhoff
,
R. L.
Myers-Ward
,
A.
Christou
, and
F. J.
Kub
, “
Ultraviolet detector based on graphene/SiC heterojunction
,”
Appl. Phys. Express
8
,
041301
(
2015
).
19.
J.
Yang
,
L.
Guo
,
Y.
Guo
,
W.
Hu
, and
Z.
Zhang
, “
Epitaxial graphene/SiC Schottky ultraviolet photodiode with orders of magnitude adjustability in responsivity and response speed
,”
Appl. Phys. Lett.
112
,
103501
(
2018
).
20.
E.
Kus
,
D.
Özkendir
,
V.
Fırat
, and
C.
Çelebi
, “
Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector
,”
J. Phys. D: Appl. Phys.
48
,
095104
(
2015
).
21.
E.
Pallecchi
,
F.
Lafont
,
V.
Cavaliere
,
F.
Schopfer
,
D.
Mailly
,
W.
Poirier
, and
A.
Ouerghi
, “
High electron mobility in epitaxial graphene on 4H-SiC (0001) via post-growth annealing under hydrogen
,”
Sci. Rep. (UK)
4
,
4558
(
2014
).
22.
C.
Riedl
,
C.
Coletti
, and
U.
Starke
, “
Structural and electronic properties of epitaxial graphene on SiC (0001): A review of growth, characterization, transfer doping and hydrogen intercalation
,”
J. Phys. D: Appl. Phys.
43
,
374009
(
2010
).
23.
C.
Sun
,
W.
Cai
,
R.
Hong
,
J.
Wu
,
X.
Chen
,
J.
Cai
,
F.
Zhang
, and
Z.
Wu
, “
Tuning electronic properties of epitaxial multilayer-graphene/4H–SiC (0001) by Joule heating decomposition in hydrogen
,”
J. Phys. Chem. Solids
137
,
109224
(
2020
).
24.
C.
Sun
,
X.
Chen
,
R.
Hong
,
X.
Li
,
X.
Xu
,
X.
Chen
,
J.
Cai
,
X.-A.
Zhang
,
W.
Cai
, and
Z.
Wu
, “
Enhancing the photoelectrical performance of graphene/4H-SiC/graphene detector by tuning a Schottky barrier by bias
,”
Appl. Phys. Lett.
117
,
071102
(
2020
).
25.
W.
Yang
,
F.
Zhang
,
Z.
Liu
, and
Z.
Wu
, “
Effects of annealing on the performance of 4H-SiC metal–semiconductor–metal ultraviolet photodetectors
,”
Mater. Sci. Semicond. Process.
11
,
59
62
(
2008
).
26.
D. S.
Lee
,
C.
Riedl
,
B.
Krauss
,
K.
von Klitzing
,
U.
Starke
, and
J. H.
Smet
, “
Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2
,”
Nano Lett.
8
,
4320
4325
(
2008
).
27.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
, and
S.
Roth
, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
,
187401
(
2006
).
28.
T.
Mohiuddin
,
A.
Lombardo
,
R.
Nair
,
A.
Bonetti
,
G.
Savini
,
R.
Jalil
,
N.
Bonini
,
D.
Basko
,
C.
Galiotis
, and
N.
Marzari
, “
Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation
,”
Phys. Rev. B
79
,
205433
(
2009
).
29.
D.
Mafra
,
G.
Samsonidze
,
L.
Malard
,
D. C.
Elias
,
J.
Brant
,
F.
Plentz
,
E. S.
Alves
, and
M. A.
Pimenta
, “
Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering
,”
Phys. Rev. B
76
,
233407
(
2007
).
30.
K.
Emtsev
,
F.
Speck
,
T.
Seyller
,
L.
Ley
, and
J. D.
Riley
, “
Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study
,”
Phys. Rev. B
77
,
155303
(
2008
).
31.
S.
Fiori
,
Y.
Murata
,
S.
Veronesi
,
A.
Rossi
,
C.
Coletti
, and
S.
Heun
, “
Li-intercalated graphene on SiC (0001): An STM study
,”
Phys. Rev. B
96
,
125429
(
2017
).
32.
A.
Wirth-Lima
,
P.
Alves-Sousa
, and
W.
Bezerra-Fraga
, “
n-graphene/p-silicon-based Schottky junction solar cell, with very high power conversion efficiency
,”
SN Appl. Sci.
2
,
905
913
(
2020
).
33.
M.
Dub
,
P.
Sai
,
A.
Przewoka
,
A.
Krajewska
,
M.
Sakowicz
,
P.
Prystawko
,
J.
Kacperski
,
I.
Pasternak
,
G.
Cywiński
, and
D.
But
, “
Graphene as a Schottky barrier contact to AlGaN/GaN heterostructures
,”
Materials
13
,
4140
(
2020
).
34.
H.-K.
Kim
,
S. I.
Kim
,
S.
Kim
,
N.-S.
Lee
,
H.-K.
Shin
, and
C. W.
Lee
, “
Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses
,”
Nanoscale
12
,
8216
8229
(
2020
).
35.
V.
Afanasev
,
M.
Bassler
,
G.
Pensl
, and
M.
Schulz
, “
Intrinsic SiC/SiO2 interface states
,”
Phys. Status Solidi A
162
,
321
337
(
1997
).
36.
S.-H.
Tsai
,
S.
Lei
,
X.
Zhu
,
S.-P.
Tsai
,
G.
Yin
,
X.
Che
,
P.
Deng
,
J.
Ng
,
X.
Zhang
, and
W.-H.
Lin
, “
Interfacial states and Fano–Feshbach resonance in graphene–silicon vertical junction
,”
Nano Lett.
19
,
6765
6771
(
2019
).
37.
H. F.
Haneef
,
A. M.
Zeidell
, and
O. D.
Jurchescu
, “
Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices
,”
J. Mater. Chem. C
8
,
759
787
(
2020
).
38.
B. H.
Morkoc
,
S.
Strite
,
G.
Gao
,
M.
Lin
,
B.
Sverdlov
, and
M.
Burns
, “
Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies
,”
J. Appl. Phys.
76
,
1363
1398
(
1994
).
39.
Y.-L.
Xu
,
H.-X.
Li
,
C.-B.
Zhou
,
X.-S.
Xiao
,
Z.-C.
Bai
,
Z.-P.
Zhang
, and
S.-J.
Qin
, “
The ultraviolet absorption of graphene in the Tamm state
,”
Optik
219
,
165015
(
2020
).
You do not currently have access to this content.