We adopt superconductor/ferromagnet/insulator/superconductor (SFIS) Josephson junctions (JJs) as both switching JJs and intrinsic π phase shifters in superconductor digital circuits. The critical current density (Jc) and characteristic voltage (Vc) of the SFIS junctions are about 22 A/cm2 and 22 μV, respectively. The intrinsic π phase shift is confirmed by measuring the suppressed nominal critical current Icn and half-period-shifted modulation pattern of a π–π–π superconducting quantum interference device (SQUID) that contains three π-JJs in a superconducting loop. A single-flux-quantum (SFQ) circuit composed of a DC/SFQ, Josephson transmission line (JTL), and SFQ/DC converter based on SFIS JJs alone is demonstrated at 4.2 K. The energy dissipation of the SFQ/DC converter decreases by 80% because some JJs are self-biased by the π phase shifter. The intrinsic circulating currents induced by the π phase shifters lead to a narrow bias margin (±5%) and even error function, which can be solved by parameters optimization or circuit initialization in the future. The half-modulation period (Φ0/2) of a half-flux-quantum (HFQ) SQUID (a partial HFQ JTL) exhibits propagation of HFQ between π–π–π SQUIDs, indicating that more complex HFQ circuits can be developed with π-JJs alone in the future.

1.
B. T.
Matthias
,
H.
Suhl
, and
E.
Corenzwit
,
Phys. Rev. Lett.
1
,
449
(
1958
).
2.
3.
Y.
Tanaka
and
S.
Kashiwaya
,
Physica C
274
,
357
(
1997
).
4.
V. V.
Ryazanov
,
Usp. Fiz. Nauk.
169
,
920
(
1999
).
5.
V. A.
Oboznov
,
V. V.
Bol'ginov
,
A. K.
Feofanov
,
V. V.
Ryazanov
, and
A. I.
Buzdin
,
Phys. Rev. Lett.
96
,
197003
(
2006
).
6.
T. S.
Khaire
,
W. P.
Pratt
, and
N. O.
Birge
,
Phys. Rev. B
79
,
094523
(
2009
).
7.
M.
Weides
,
M.
Kemmler
,
E.
Goldobin
,
D.
Koelle
,
R.
Kleiner
,
H.
Kohlstedt
, and
A.
Buzdin
,
Appl. Phys. Lett.
89
,
122511
(
2006
).
8.
F.
Li
,
W.
Peng
, and
Z.
Wang
,
Chin. Phys. Lett.
36
,
047401
(
2019
).
9.
D.
Pham
,
R.
Sugimoto
,
K.
Oba
,
Y.
Takeshita
,
F.
Li
,
M.
Tanaka
,
T.
Yamashita
, and
A.
Fujimaki
,
Sci. Rep.
12
,
6863
(
2022
).
10.
V. V.
Ryazanov
,
V. A.
Oboznov
,
A. Y.
Rusanov
,
A. V.
Veretennikov
,
A. A.
Golubov
, and
J.
Aarts
,
Phys. Rev. Lett.
86
,
2427
(
2001
).
11.
T.
Yamashita
,
A.
Kawakami
, and
H.
Terai
,
Phys. Rev. Appl.
8
,
054028
(
2017
).
12.
F.
Li
,
L.
Wu
,
L.
Chen
,
S. Q.
Zhang
,
W.
Peng
, and
Z.
Wang
,
Phys. Rev. B
99
,
100506(R)
(
2019
).
13.
H.
Sellier
,
C.
Baraduc
,
F.
Lefloch
, and
R.
Calemczuk
,
Phys. Rev. Lett.
92
,
257005
(
2004
).
14.
A.
Buzdin
,
Phys. Rev. B
72
,
100501(R)
(
2005
).
15.
M. J. A.
Stoutimore
,
A. N.
Rossolenko
,
V. V.
Bolginov
et al,
Phys. Rev. Lett.
121
,
177702
(
2018
).
16.
A. F.
Volkov
,
F. S.
Bergeret
, and
K. B.
Efetov
,
Phys. Rev. Lett.
90
,
117006
(
2003
).
17.
R. S.
Keizer
,
S. T. B.
Goennenwein
,
T. M.
Klapwijk
,
G. X.
Miao
,
G.
Xiao
, and
A.
Gupta
,
Nature
439
,
825
(
2006
).
18.
M. A.
Khasawneh
,
T. S.
Khaire
,
C.
Klose
,
W. P.
Pratt
, Jr.
, and
N. O.
Birge
,
Supercond. Sci. Technol.
24
,
024005
(
2011
).
19.
J. W. A.
Robinson
,
F.
Chiodi
,
M.
Egilmez
,
G. B.
Halasz
, and
M. G.
Blamire
,
Sci. Rep.
2
,
699
(
2012
).
20.
B.
Baek
,
W. H.
Rippard
,
S. P.
Benz
,
S. E.
Russek
, and
P. D.
Dresselhaus
,
Nat. Commun.
5
,
3888
(
2014
).
21.
T. I.
Larkin
,
V. V.
Bol'ginov
,
V. S.
Stolyarov
,
V. V.
Ryazanov
,
I. V.
Vernik
,
S. K.
Tolpygo
, and
O. A.
Mukhanov
,
Appl. Phys. Lett.
100
,
222601
(
2012
).
22.
E.
Jue
,
M. R.
Pufall
,
I. W.
Haygood
,
W. H.
Rippard
, and
M. L.
Schneider
,
Appl. Phys. Lett.
121
,
240501
(
2022
).
23.
E.
Terzioglu
and
M. R.
Beasley
,
IEEE Trans. Appl. Supercond.
8
,
48
(
1998
).
24.
A. V.
Ustinov
and
V. K.
Kaplunenko
,
J. Appl. Phys.
94
,
5405
(
2003
).
25.
Y.
Yamanashi
,
S.
Nakaishi
,
A.
Sugiyama
,
N.
Takeuchi
, and
N.
Yoshikawa
,
Supercond. Sci. Technol.
31
,
105003
(
2018
).
26.
Y.
Yamanashi
,
S.
Nakaishi
, and
N.
Yoshikawa
,
IEEE Trans. Appl. Supercond.
29
,
1301805
(
2019
).
27.
V. V.
Ryazanov
,
V. V.
Bol'ginov
,
D. S.
Sobanin
,
I. V.
Vernik
,
S. K.
Tolpygo
,
A. M.
Kadin
, and
O. A.
Mukhanov
,
Phys. Procedia
36
,
35
(
2012
).
28.
A. K.
Feofanov
,
V. A.
Oboznov
,
V. V.
Bol'ginov
et al,
Nat. Phys.
6
,
593
(
2010
).
29.
M. I.
Khabipov
,
D. V.
Balashov
,
F.
Maibaum
,
A. B.
Zorin
,
V. A.
Oboznov
,
V. V.
Bolginov
,
A. N.
Rossolenko
, and
V. V.
Ryazanov
,
Supercond. Sci. Technol.
23
,
045032
(
2010
).
30.
D.
Hasegawa
,
Y.
Takeshita
,
F.
Li
,
K.
Sano
,
M.
Tanaka
,
T.
Yamashita
, and
A.
Fujimaki
,
IEEE Trans. Appl. Supercond.
31
,
1101504
(
2021
).
31.
H.
Terai
,
M.
Tanaka
,
Y.
Yamanashi
,
Y.
Hashimoto
,
A.
Fujimaki
,
N.
Yoshikawa
, and
Z.
Wang
,
IEEE Trans. Appl. Supercond.
17
,
422
(
2007
).
32.
J. J. A.
Baselmans
,
B. J.
van Wees
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
79
,
2940
(
2001
).
33.
C.
Howington
,
A.
Opremcak
,
R.
McDermott
,
A.
Kirichenko
,
O. A.
Mukhanov
, and
B. L. T.
Plourde
,
IEEE Trans. Appl. Supercond.
29
,
1700305
(
2019
).
34.
E.
Leonard
,
M.
Beck
,
A. J.
Nelson
et al,
Phys. Rev. Appl.
11
,
014009
(
2019
).
35.
S.
Kim
,
H.
Terai
,
T.
Yamashita
,
W.
Qiu
,
T.
Fuse
,
F.
Yoshihara
,
S.
Ashhab
,
K.
Inomata
, and
K.
Semba
,
Commun. Mater.
2
,
98
(
2021
).
36.
T.
Yamashita
,
S.
Kim
,
H.
Kato
,
W.
Qiu
,
K.
Semba
,
A.
Fujimaki
, and
H.
Terai
,
Sci. Rep.
10
,
13687
(
2020
).
37.
W.
Guichard
,
M.
Aprili
,
O.
Bourgeois
,
T.
Kontos
,
J.
Lesueur
, and
P.
Gandit
,
Phys. Rev. Lett.
90
,
167001
(
2003
).
38.
F.
Li
,
Y.
Takeshita
,
D.
Hasegawa
,
M.
Tanaka
,
T.
Yamashita
, and
A.
Fujimaki
,
Supercond. Sci. Technol.
34
,
025013
(
2021
).
39.
S.
Yorozu
,
Y.
Kameda
,
H.
Terai
,
A.
Fujimaki
,
T.
Yamada
, and
S.
Tahara
,
Physica C
378–381
,
1471
(
2002
).
40.
C. J.
Fourie
,
O.
Wetzstein
,
T.
Ortlepp
, and
J.
Kunert
,
Supercond. Sci. Technol.
24
,
125015
(
2011
).
41.
T.
Kamiya
,
M.
Tanaka
,
K.
Sano
, and
A.
Fujimaki
,
IEICE Trans. Electron.
E101.C
,
385
(
2018
).
42.
F. L.
Yuto Takeshita
,
M.
Higashi
,
M.
Tanaka
,
T.
Yamashita
, and
A.
Fujimaki
,
Supercond. Sci. Technol.
36
,
045004
(
2023
).
You do not currently have access to this content.