A-type antiferromagnetism, with an in-plane ferromagnetic order and the interlayer antiferromagnetic coupling, owns inborn advantages for electrical manipulations but is naturally rare in real materials except in those artificial antiferromagnetic heterostructures. Here, a robust layered antiferromagnetism with a high Néel temperature is predicted in a MXene Cr2CCl2 monolayer, which provides an ideal platform as a magnetoelectric field effect transistor. Based on first-principles calculations, we demonstrate that an electric field can induce the band splitting between spin-up and spin-down channels. Although no net magnetization is generated, the inversion symmetry between the lower Cr layer and the upper Cr layer is broken via electronic cloud distortions. Moreover, this electric field can be replaced by a proximate ferroelectric layer for non-volatility. The magneto-optic Kerr effect can be used to detect this magnetoelectricity, even if it is a collinear antiferromagnet with zero magnetization.

1.
M.
An
and
S.
Dong
,
APL Mater.
8
,
110704
(
2020
).
2.
E.
Torun
,
H.
Sahin
,
S. K.
Singh
, and
F. M.
Peeters
,
Appl. Phys. Lett.
106
,
192404
(
2015
).
3.
S.
Zhou
,
L.
You
,
H. L.
Zhou
,
Y.
Pu
,
Z. G.
Gui
, and
J. L.
Wang
,
Front. Phys.
16
,
13301
(
2021
).
4.
C.
Gong
and
X.
Zhang
,
Science
363
,
eaav4450
(
2019
).
5.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
et al,
Nature
546
,
270
(
2017
).
6.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
et al,
Nature
546
,
265
(
2017
).
7.
K. S.
Burch
,
D.
Mandrus
, and
J.-G.
Park
,
Nature
563
,
47
(
2018
).
8.
K.
Chang
,
J. W.
Liu
,
H. C.
Lin
,
N.
Wang
,
K.
Zhao
,
A. M.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X. P.
Hu
,
W. H.
Duan
,
Q. M.
Zhang
,
L.
Fu
,
Q. K.
Xue
,
X.
Chen
, and
S. H.
Ji
,
Science
353
,
274
(
2016
).
9.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X. B.
Li
,
P.
Yu
,
J. H.
Lin
,
X. W.
Wang
,
J. D.
Zhou
,
H.
Wang
,
H. Y.
He
et al,
Nat. Commun.
7
,
12357
(
2016
).
10.
C. J.
Cui
,
W. J.
Hu
,
X. X.
Yan
,
C.
Addiego
,
W. P.
Gao
,
Y.
Wang
,
Z.
Wang
,
L. Z.
Li
,
Y. C.
Cheng
,
P.
Li
et al,
Nano Lett.
18
,
1253
(
2018
).
11.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
,
Nat. Nanotechnol.
11
,
231
(
2016
).
12.
T.
Jungwirth
,
J.
Sinova
,
A.
Manchon
,
X.
Marti
,
J.
Wunderlich
, and
C.
Felser
,
Nat. Phys.
14
,
200
(
2018
).
13.
S.
Dong
and
E.
Dagotto
,
Phys. Rev. B
88
,
140404(R)
(
2013
).
14.
B.
Huang
,
G.
Clark
,
D. R.
Klein
,
M.
David
,
E.
Navarro-Moratalla
,
K. L.
Seyler
,
N.
Wilson
,
M. A.
McGuire
,
D. H.
Cobden
,
D.
Xiao
et al,
Nat. Nanotechnol.
13
,
544
(
2018
).
15.
Z.
Wang
,
I.
Gutiérrez-Lezama
,
N.
Ubrig
,
M.
Kroner
,
M.
Gibertini
,
T.
Taniguchi
,
K.
Watanabe
,
A.
Imamoğlu
,
E.
Giannini
, and
A. F.
Morpurgo
,
Nat. Commun.
9
,
2516
(
2018
).
16.
H. F.
Lv
,
Y. J.
Niu
,
X. J.
Wu
, and
J. L.
Yang
,
Nano Lett.
21
,
7050
(
2021
).
17.
S. J.
Gong
,
C.
Gong
,
Y. Y.
Sun
,
W. Y.
Tong
,
C. G.
Duan
,
J. H.
Chu
, and
X.
Zhang
,
Proc. Natl. Acad. Sci.
115
,
8511
(
2018
).
18.
C. K.
Tian
,
F. H.
Pan
,
L.
Wang
,
D. H.
Ye
,
J. M.
Sheng
,
J. C.
Wang
,
L. J.
Juan
,
J. L.
Huang
,
H. X.
Zhang
,
D. Y.
Xu
et al,
Phys. Rev. B
104
,
214410
(
2021
).
19.
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J.
Niu
,
M.
Heon
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
,
Adv. Mater.
23
,
4248
(
2011
).
20.
A.
Miranda
,
J.
Halim
,
M. W.
Barsoum
, and
A.
Lorke
,
Appl. Phys. Lett.
108
,
033102
(
2016
).
21.
H.
Kumar
,
N. C.
Frey
,
L.
Dong
,
B.
Anasori
,
Y.
Gogotsi
, and
V. B.
Shenoy
,
ACS Nano
11
,
7648
(
2017
).
22.
G.
Wang
,
J. Phys. Chem. C
120
,
18850
(
2016
).
23.
S.
Li
,
J. J.
He
,
L.
Grajciar
, and
P.
Nachtigall
,
J. Mater. Chem. C
9
,
11132
(
2021
).
24.
Y. K.
Weng
,
L. F.
Lin
,
E.
Dagotto
, and
S.
Dong
,
Phys. Rev. Lett.
117
,
037601
(
2016
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
28.
J.
He
,
P.
Lyu
,
L. Z.
Sun
et al,
J. Mater. Chem. C
4
,
6500
(
2016
).
29.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
(
2015
).
30.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
31.
A.
Gulans
,
S.
Kontur
,
C.
Meisenbichler
,
D.
Nabok
,
P.
Pavone
,
S.
Rigamonti
,
S.
Sagmeister
,
U.
Werner
, and
C.
Draxl
,
J. Phys.: Condens. Matter
26
,
363202
(
2014
).
32.
S.
Sagmeister
and
C.
Ambrosch-Draxl
,
Phys. Chem. Chem. Phys.
11
,
4451
(
2009
).
33.
D.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
2021
).
34.
M.
Khazaei
,
M.
Arai
,
T.
Sasaki
,
C.-Y.
Chung
,
N. S.
Venkataramanan
,
M.
Estili
,
Y.
Sakka
, and
Y.
Kawazoe
,
Adv. Funct. Mater.
23
,
2185
(
2013
).
35.
H. J.
Zhao
,
X.
Liu
,
Y.
Wang
,
Y.
Yang
,
L.
Bellaiche
, and
Y.
Ma
,
Phys. Rev. Lett.
129
,
187602
(
2022
).
36.
M.
Diwekar
,
V.
Kamaev
,
J.
Shi
, and
Z. V.
Vardeny
,
Appl. Phys. Lett.
84
,
3112
(
2004
).
37.
K.
Yang
,
W. T.
Hu
,
H.
Wu
,
M.-H.
Whangbo
,
P. G.
Radaelli
, and
A.
Stroppa
,
ACS Appl. Electron. Mater.
2
,
1373
(
2020
).
38.
D.
Sangalli
,
A.
Marini
, and
A.
Debernardi
,
Phys. Rev. B
86
,
125139
(
2012
).
39.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Elsevier
,
2013
).
40.
A.
Chandrasekaran
,
A.
Mishra
, and
A. K.
Singh
,
Nano Lett.
17
,
3290
(
2017
).
41.
M.
An
,
Z.
Yand
,
C.
Jun
,
Z. H.
Min
,
G. Y.
Jun
, and
S.
Dong
,
J. Phys. Chem. C
123
,
30545
(
2019
).
42.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Science
306
,
1910
(
2004
).
43.
J.
Lee
,
K. F.
Mak
, and
J.
Shan
,
Nat. Nanotechnol.
11
,
421
(
2016
).

Supplementary Material

You do not currently have access to this content.