Space-time-coding (STC) digital metasurfaces provide a powerful platform for simultaneous spatiotemporal modulations of electromagnetic waves. Therefore, the fast and accurate generation of STC matrices based on desired harmonic scattering patterns can help STC metasurfaces enhance their practicality in various applications. Here, we propose a physics-driven vector-quantized (PD-VQ) intelligent autoencoder model that consists of an encoder, a vector-quantizer layer, and a physics-driven decoder. The physical operation mechanism between the STC matrix and the harmonic scattering pattern is introduced into the decoding module of the PD-VQ intelligent autoencoder, so that the autoencoder can be trained in an unsupervised manner without the need for large amount of manually labeled data. Taking a target harmonic scattering pattern as input, the trained PD-VQ autoencoder can quickly output the optimized discrete STC matrix, which takes only about 78 ms. We present a series of simulation examples to verify the reliability and accuracy of the proposed approach and also demonstrate its good generalization capability. Based on the proposed PD-VQ intelligent autoencoder, the STC digital metasurfaces enable agile multi-frequency harmonic beamforming.

1.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
,
Phys. Rep.
634
,
1
(
2016
).
2.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
(
6054
),
333
(
2011
).
3.
N. I.
Zheludev
and
Y. S.
Kivshar
,
Nat. Mater.
11
(
11
),
917
(
2012
).
4.
A. M.
Shaltout
,
V. M.
Shalaev
, and
M. L.
Brongersma
,
Science
364
(
6441
),
eaat3100
(
2019
).
5.
S.
Taravati
and
G. V.
Eleftheriades
,
ACS Photonics
9
(
2
),
305
(
2022
).
6.
Y.
Hadad
,
D. L.
Sounas
, and
A.
Alu
,
Phys. Rev. B
92
(
10
),
100304
(
2015
).
7.
A.
Shaltout
,
A.
Kildishev
, and
V.
Shalaev
,
Opt Mater. Express
5
(
11
),
2459
(
2015
).
8.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
,
Phys. Rev. B
95
(
7
),
075113
(
2017
).
9.
Z.
Wu
and
A.
Grbic
,
IEEE Trans. Antennas Propagat.
68
(
3
),
1599
(
2020
).
10.
G.
Castaldi
,
V.
Pacheco-Peña
,
M.
Moccia
,
N.
Engheta
, and
V.
Galdi
,
Nanophotonics
10
(
14
),
3687
(
2021
).
11.
T. J.
Cui
,
M. Q.
Qi
,
X.
Wan
,
J.
Zhao
, and
Q.
Cheng
,
Light: Sci. Appl.
3
,
e218
(
2014
).
12.
L.
Li
,
T. J.
Cui
,
W.
Ji
,
S.
Liu
,
J.
Ding
,
X.
Wan
,
Y.
Bo Li
,
M.
Jiang
,
C. W.
Qiu
, and
S.
Zhang
,
Nat. Commun.
8
(
1
),
197
(
2017
).
13.
S.
Venkatesh
,
X.
Lu
,
H.
Saeidi
, and
K.
Sengupta
,
Nat. Electron.
3
(
12
),
785
(
2020
).
14.
L.
Zhang
,
R. Y.
Wu
,
G. D.
Bai
,
H. T.
Wu
,
Q.
Ma
,
X. Q.
Chen
, and
T. J.
Cui
,
Adv. Funct. Mater.
28
(
33
),
1802205
(
2018
).
15.
Y.
Shuang
,
H.
Zhao
,
W.
Ji
,
T. J.
Cui
, and
L.
Li
,
IEEE J. Emerg. Sel. Top. Circuits Syst.
10
(
1
),
29
(
2020
).
16.
Q.
Cheng
,
L.
Zhang
,
J. Y.
Dai
,
W.
Tang
,
J. C.
Ke
,
S.
Liu
,
J. C.
Liang
,
S.
Jin
, and
T. J.
Cui
,
Proc. IEEE
110
(
9
),
1266
(
2022
).
17.
Q.
Ma
,
G. D.
Bai
,
H. B.
Jing
,
C.
Yang
,
L.
Li
, and
T. J.
Cui
,
Light Sci. Appl.
8
,
98
(
2019
).
18.
R.
Nie
,
C.
He
,
R.
Zhang
, and
Z.
Song
,
Opt. Laser Technol.
159
,
109010
(
2023
).
19.
C.
Li
and
Z.
Song
,
Opt. Laser Technol.
157
,
108764
(
2023
).
20.
L.
Li
,
H.
Ruan
,
C.
Liu
,
Y.
Li
,
Y.
Shuang
,
A.
Alu
,
C. W.
Qiu
, and
T. J.
Cui
,
Nat. Commun.
10
(
1
),
1082
(
2019
).
21.
L.
Li
,
Y.
Shuang
,
Q.
Ma
,
H.
Li
,
H.
Zhao
,
M.
Wei
,
C.
Liu
,
C.
Hao
,
C. W.
Qiu
, and
T. J.
Cui
,
Light Sci. Appl.
8
,
97
(
2019
).
22.
C.
Liu
,
W. M.
Yu
,
Q.
Ma
,
L.
Li
, and
T. J.
Cui
,
Photonics Res.
9
(
4
),
B159
(
2021
).
23.
T. J.
Cui
,
S.
Liu
, and
L.
Zhang
,
J. Mater. Chem. C
5
(
15
),
3644
(
2017
).
24.
T. J.
Cui
,
L.
Li
,
S.
Liu
,
Q.
Ma
,
L.
Zhang
,
X.
Wan
,
W. X.
Jiang
, and
Q.
Cheng
,
iScience
23
(
8
),
101403
(
2020
).
25.
H.
Wu
,
G. D.
Bai
,
S.
Liu
,
L.
Li
,
X.
Wan
,
Q.
Cheng
, and
T. J.
Cui
,
Natl. Sci. Rev.
7
(
3
),
561
(
2020
).
26.
L.
Zhang
,
X. Q.
Chen
,
S.
Liu
,
Q.
Zhang
,
J.
Zhao
,
J. Y.
Dai
,
G. D.
Bai
,
X.
Wan
,
Q.
Cheng
,
G.
Castaldi
,
V.
Galdi
, and
T. J.
Cui
,
Nat. Commun.
9
(
1
),
4334
(
2018
).
27.
L.
Zhang
and
T. J.
Cui
,
Res. (Wash D C)
2021
,
9802673
.
28.
L.
Zhang
,
X. Q.
Chen
,
R. W.
Shao
,
J. Y.
Dai
,
Q.
Cheng
,
G.
Castaldi
,
V.
Galdi
, and
T. J.
Cui
,
Adv. Mater.
31
(
41
),
e1904069
(
2019
).
29.
L.
Zhang
,
Z. X.
Wang
,
R. W.
Shao
,
J. L.
Shen
,
X. Q.
Chen
,
X.
Wan
,
Q.
Cheng
, and
T. J.
Cui
,
IEEE Trans. Antennas Propagat.
68
(
4
),
2984
(
2020
).
30.
J.
Zhao
,
X.
Yang
,
J. Y.
Dai
,
Q.
Cheng
,
X.
Li
,
N. H.
Qi
,
J. C.
Ke
,
G. D.
Bai
,
S.
Liu
,
S.
Jin
,
A.
Alu
, and
T. J.
Cui
,
Natl. Sci. Rev.
6
(
2
),
231
(
2019
).
31.
H.
Rajabalipanah
,
A.
Abdolali
,
S.
Iqbal
,
L.
Zhang
, and
T. J.
Cui
,
Nanophotonics
10
(
6
),
1753
(
2021
).
32.
J. Y.
Dai
,
W. K.
Tang
,
M. T.
Wang
,
M. Z.
Chen
,
Q.
Cheng
,
S.
Jin
,
T. J.
Cui
, and
C. H.
Chan
,
IEEE Trans. Antennas Propagat.
70
(
6
),
4774
(
2022
).
33.
X. Q.
Chen
,
L.
Zhang
,
S.
Liu
, and
T. J.
Cui
,
Adv. Opt. Mater.
10
(
23
),
2201900
(
2022
).
34.
J. C.
Ke
,
J. Y.
Dai
,
J. W.
Zhang
,
Z.
Chen
,
M. Z.
Chen
,
Y.
Lu
,
L.
Zhang
,
L.
Wang
,
Q. Y.
Zhou
,
L.
Li
,
J. S.
Ding
,
Q.
Cheng
, and
T. J.
Cui
,
Light Sci. Appl.
11
(
1
),
273
(
2022
).
35.
L.
Zhang
,
M. Z.
Chen
,
W.
Tang
,
J. Y.
Dai
,
L.
Miao
,
X. Y.
Zhou
,
S.
Jin
,
Q.
Cheng
, and
T. J.
Cui
,
Nat. Electron.
4
(
3
),
218
(
2021
).
36.
G.
Castaldi
,
L.
Zhang
,
M.
Moccia
,
A. Y.
Hathaway
,
W. X.
Tang
,
T. J.
Cui
, and
V.
Galdi
,
Adv. Funct. Mater.
31
(
6
),
2007620
(
2021
).
37.
M. K.
Chen
,
X.
Liu
,
Y.
Sun
, and
D. P.
Tsai
,
Chem. Rev.
122
(
19
),
15356
(
2022
).
38.
X.
Lin
,
Y.
Rivenson
,
N. T.
Yardimci
,
M.
Veli
,
Y.
Luo
,
M.
Jarrahi
, and
A.
Ozcan
,
Science
361
(
6406
),
1004
(
2018
).
39.
C.
Liu
,
Q.
Ma
,
Z. J.
Luo
,
Q. R.
Hong
,
Q.
Xiao
,
H. C.
Zhang
,
L.
Miao
,
W. M.
Yu
,
Q.
Cheng
,
L.
Li
, and
T. J.
Cui
,
Nat. Electron.
5
(
2
),
113
(
2022
).
40.
C.
Qian
,
B.
Zheng
,
Y.
Shen
,
L.
Jing
,
E.
Li
,
L.
Shen
, and
H.
Chen
,
Nat. Photonics
14
(
6
),
383
(
2020
).
41.
C.
Qian
,
X.
Lin
,
X.
Lin
,
J.
Xu
,
Y.
Sun
,
E.
Li
,
B.
Zhang
, and
H.
Chen
,
Light Sci. Appl.
9
(
1
),
59
(
2020
).
42.
P. D.
Hougne
,
M. F.
Imani
,
A. V.
Diebold
,
R.
Horstmeyer
, and
D. R.
Smith
,
Adv. Sci.
7
(
3
),
1901913
(
2020
).
43.
Q.
Zhang
,
C.
Liu
,
X.
Wan
,
L.
Zhang
,
S.
Liu
,
Y.
Yang
, and
T. J.
Cui
,
Adv. Theory Simul.
2
(
2
),
1800132
(
2019
).
44.
W.
Ma
,
F.
Cheng
, and
Y.
Liu
,
ACS Nano
12
(
6
),
6326
(
2018
).
45.
J.
Jiang
and
J. A.
Fan
,
Nano Lett.
19
(
8
),
5366
5372
(
2019
).
46.
T.
Shan
,
X.
Pan
,
M.
Li
,
S.
Xu
, and
F.
Yang
,
IEEE J. Emerg. Sel. Top. Circuits Syst.
10
(
1
),
114
(
2020
).
47.
A.
van den Oord
,
O.
Vinyals
, and
K.
Kavukcuoglu
,
Adv. Neural Inf. Processing Syst.;
arXiv:1711.00937.
You do not currently have access to this content.