Topological-material-based Josephson junctions have the potential to be used to host Majorana zero modes and to construct topological qubits. For operating the topological qubits at an appropriate timescale to avoid decoherence and quasiparticle poisoning, one would eventually go to the time domain and embed the topological qubits into quantum electrodynamic circuits. Here, we constructed a topological-insulator-nanowire-based transmon qubit and demonstrated its strong coupling to a coplanar waveguide resonator. The flux-tunable spectrum and Rabi oscillations with a qubit lifetime T 1 of ∼ 0.5   μ s were observed. Such a hybrid platform, containing topological materials and quantum electrodynamic circuits, can further be used to study the physical properties such as Majorana zero modes in topological quantum circuits.

1.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
(
7779
),
505
510
(
2019
).
2.
M.
Gong
,
S.
Wang
,
C.
Zha
,
M.-C.
Chen
,
H.-L.
Huang
,
Y.
Wu
,
Q.
Zhu
,
Y.
Zhao
,
S.
Li
,
S.
Guo
,
H.
Qian
,
Y.
Ye
,
F.
Chen
,
C.
Ying
,
J.
Yu
,
D.
Fan
,
D.
Wu
,
H.
Su
,
H.
Deng
,
H.
Rong
,
K.
Zhang
,
S.
Cao
,
J.
Lin
,
Y.
Xu
,
L.
Sun
,
C.
Guo
,
N.
Li
,
F.
Liang
,
V. M.
Bastidas
,
K.
Nemoto
,
W. J.
Munro
,
Y.-H.
Huo
,
C.-Y.
Lu
,
C.-Z.
Peng
,
X.
Zhu
, and
J.-W.
Pan
, “
Quantum walks on a programmable two-dimensional 62-qubit superconducting processor
,”
Science
372
(
6545
),
948
952
(
2021
).
3.
G.
de Lange
,
B.
van Heck
,
A.
Bruno
,
D. J.
van Woerkom
,
A.
Geresdi
,
S. R.
Plissard
,
E. P.
Bakkers
,
A. R.
Akhmerov
, and
L.
DiCarlo
, “
Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements
,”
Phys. Rev. Lett.
115
(
12
),
127002
(
2015
).
4.
T. W.
Larsen
,
K. D.
Petersson
,
F.
Kuemmeth
,
T. S.
Jespersen
,
P.
Krogstrup
,
J.
Nygard
, and
C. M.
Marcus
, “
Semiconductor-nanowire-based superconducting qubit
,”
Phys. Rev. Lett.
115
(
12
),
127001
(
2015
).
5.
L.
Casparis
,
M. R.
Connolly
,
M.
Kjaergaard
,
N. J.
Pearson
,
A.
Kringhoj
,
T. W.
Larsen
,
F.
Kuemmeth
,
T.
Wang
,
C.
Thomas
,
S.
Gronin
,
G. C.
Gardner
,
M. J.
Manfra
,
C. M.
Marcus
, and
K. D.
Petersson
, “
Superconducting gatemon qubit based on a proximitized two-dimensional electron gas
,”
Nat. Nanotechnol.
13
(
10
),
915
919
(
2018
).
6.
J. I.
Wang
,
D.
Rodan-Legrain
,
L.
Bretheau
,
D. L.
Campbell
,
B.
Kannan
,
D.
Kim
,
M.
Kjaergaard
,
P.
Krantz
,
G. O.
Samach
,
F.
Yan
,
J. L.
Yoder
,
K.
Watanabe
,
T.
Taniguchi
,
T. P.
Orlando
,
S.
Gustavsson
,
P.
Jarillo-Herrero
, and
W. D.
Oliver
, “
Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures
,”
Nat. Nanotechnol.
14
(
2
),
120
125
(
2019
).
7.
M.
Mergenthaler
,
A.
Nersisyan
,
A.
Patterson
,
M.
Esposito
,
A.
Baumgartner
,
C.
Schönenberger
,
G. A. D.
Briggs
,
E. A.
Laird
, and
P. J.
Leek
, “
Circuit quantum electrodynamics with carbon-nanotube-based superconducting quantum circuits
,”
Phys. Rev. Appl.
15
(
6
),
064050
(
2021
).
8.
L.
Fu
and
C. L.
Kane
, “
Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
,”
Phys. Rev. Lett.
100
(
9
),
096407
(
2008
).
9.
J.
Wang
,
Q.
Zhou
,
B.
Lian
, and
S.-C.
Zhang
, “
Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition
,”
Phys. Rev. B
92
(
6
),
064520
(
2015
).
10.
K.-L.
Chiu
,
D.
Qian
,
J.
Qiu
,
W.
Liu
,
D.
Tan
,
V.
Mosallanejad
,
S.
Liu
,
Z.
Zhang
,
Y.
Zhao
, and
D.
Yu
, “
Flux tunable superconducting quantum circuit based on Weyl semimetal MoTe2
,”
Nano Lett.
20
(
12
),
8469
8475
(
2020
).
11.
T. W.
Schmitt
,
M. R.
Connolly
,
M.
Schleenvoigt
,
C.
Liu
,
O.
Kennedy
,
J. M.
Chávez-Garcia
,
A. R.
Jalil
,
B.
Bennemann
,
S.
Trellenkamp
,
F.
Lentz
,
E.
Neumann
,
T.
Lindström
,
S. E.
de Graaf
,
E.
Berenschot
,
N.
Tas
,
G.
Mussler
,
K. D.
Petersson
,
D.
Grützmacher
, and
P.
Schüffelgen
, “
Integration of topological insulator Josephson junctions in superconducting qubit circuits
,”
Nano Lett.
22
(
7
),
2595
2602
(
2022
).
12.
F.
Hassler
,
A. R.
Akhmerov
, and
C. W. J.
Beenakker
, “
The top-transmon: A hybrid superconducting qubit for parity-protected quantum computation
,”
New J. Phys.
13
(
9
),
095004
(
2011
).
13.
T.
Hyart
,
B.
van Heck
,
I. C.
Fulga
,
M.
Burrello
,
A. R.
Akhmerov
, and
C. W. J.
Beenakker
, “
Flux-controlled quantum computation with Majorana fermions
,”
Phys. Rev. B
88
(
3
),
035121
(
2013
).
14.
D.
Pekker
,
C. Y.
Hou
,
V. E.
Manucharyan
, and
E.
Demler
, “
Proposal for coherent coupling of Majorana zero modes and superconducting qubits using the 4π Josephson effect
,”
Phys. Rev. Lett.
111
(
10
),
107007
(
2013
).
15.
E.
Ginossar
and
E.
Grosfeld
, “
Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit
,”
Nat. Commun.
5
(
1
),
4772
(
2014
).
16.
K.
Yavilberg
,
E.
Ginossar
, and
E.
Grosfeld
, “
Differentiating Majorana from Andreev bound states in a superconducting circuit
,”
Phys. Rev. B
100
(
24
),
241408
(
2019
).
17.
J.
Ávila
,
E.
Prada
,
P.
San-Jose
, and
R.
Aguado
, “
Majorana oscillations and parity crossings in semiconductor nanowire-based transmon qubits
,”
Phys. Rev. Res.
2
(
3
),
033493
(
2020
).
18.
R.
Barends
,
J.
Kelly
,
A.
Megrant
,
D.
Sank
,
E.
Jeffrey
,
Y.
Chen
,
Y.
Yin
,
B.
Chiaro
,
J.
Mutus
,
C.
Neill
,
P.
O'Malley
,
P.
Roushan
,
J.
Wenner
,
T. C.
White
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Coherent Josephson qubit suitable for scalable quantum integrated circuits
,”
Phys. Rev. Lett.
111
(
8
),
080502
(
2013
).
19.
D.
Pitsun
,
A.
Sultanov
,
I.
Novikov
,
E.
Mutsenik
,
B.
Ivanov
,
A.
Matanin
,
V.
Polozov
,
E.
Malevannaya
,
A.
Ivanov
,
G.
Fedorov
,
K.
Delfanazari
,
I.
Rodionov
, and
E.
Il'ichev
, “
Cross coupling of a solid-state qubit to an input signal due to multiplexed dispersive readout
,”
Phys. Rev. Appl.
14
(
5
),
054059
(
2020
).
20.
A.
Cook
and
M.
Franz
, “
Majorana fermions in a topological-insulator nanowire proximity-coupled to an s-wave superconductor
,”
Phys. Rev. B
84
(
20
),
201105
(
2011
).
21.
X.
Sun
,
Z.
Lyu
,
E.
Zhuo
,
B.
Li
,
Z.
Ji
,
J.
Fan
,
X.
Song
,
F.
Qu
,
G.
Liu
,
J.
Shen
, and
L.
Lu
, “
Quasiparticle poisoning rate in a superconducting transmon qubit involving Majorana zero modes
,” arXiv:2211.08094 (
2022
).
22.
J.
Lisenfeld
,
A.
Bilmes
,
A.
Megrant
,
R.
Barends
,
J.
Kelly
,
P.
Klimov
,
G.
Weiss
,
J. M.
Martinis
, and
A. V.
Ustinov
, “
Electric field spectroscopy of material defects in transmon qubits
,”
npj Quantum Inf.
5
(
1
),
105
(
2019
).
23.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
(
12
),
124501
(
2019
).
24.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
J.
Majer
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Approaching unit visibility for control of a superconducting qubit with dispersive readout
,”
Phys. Rev. Lett.
95
(
6
),
060501
(
2005
).
25.
R.
Vijay
,
C.
Macklin
,
D. H.
Slichter
,
S. J.
Weber
,
K. W.
Murch
,
R.
Naik
,
A. N.
Korotkov
, and
I.
Siddiqi
, “
Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback
,”
Nature
490
(
7418
),
77
80
(
2012
).
26.
G.
Catelani
, “
Parity switching and decoherence by quasiparticles in single-junction transmons
,”
Phys. Rev. B
89
(
9
),
094522
(
2014
).
27.
K.
Serniak
,
M.
Hays
,
G.
de Lange
,
S.
Diamond
,
S.
Shankar
,
L. D.
Burkhart
,
L.
Frunzio
,
M.
Houzet
, and
M. H.
Devoret
, “
Hot nonequilibrium quasiparticles in transmon qubits
,”
Phys. Rev. Lett.
121
(
15
),
157701
(
2018
).
28.
G.
Catelani
,
R. J.
Schoelkopf
,
M. H.
Devoret
, and
L. I.
Glazman
, “
Relaxation and frequency shifts induced by quasiparticles in superconducting qubits
,”
Phys. Rev. B
84
(
6
),
064517
(
2011
).
29.
K.
Serniak
,
S.
Diamond
,
M.
Hays
,
V.
Fatemi
,
S.
Shankar
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons
,”
Phys. Rev. Appl.
12
(
1
),
014052
(
2019
).
30.
W.
Uilhoorn
,
J. G.
Kroll
,
A.
Bargerbos
,
S. D.
Nabi
,
C.-K.
Yang
,
P.
Krogstrup
,
L. P.
Kouwenhoven
,
A.
Kou
, and
G.
de Lange
, “
Quasiparticle trapping by orbital effect in a hybrid superconducting-semiconducting circuit
,” arXiv:2105.11038 (
2021
).
31.
D.
Rainis
and
D.
Loss
, “
Majorana qubit decoherence by quasiparticle poisoning
,”
Phys. Rev. B
85
(
17
),
174533
(
2012
).
32.
T.
Karzig
,
W. S.
Cole
, and
D. I.
Pikulin
, “
Quasiparticle poisoning of Majorana qubits
,”
Phys. Rev. Lett.
126
(
5
),
057702
(
2021
).
33.
D. I.
Schuster
,
A.
Wallraff
,
A.
Blais
,
L.
Frunzio
,
R.-S.
Huang
,
J.
Majer
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
AC stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field
,”
Phys. Rev. Lett.
94
(
12
),
123602
(
2005
).
34.
F.
Bloch
, “
Generalized theory of relaxation
,”
Phys. Rev.
105
(
4
),
1206
(
1957
).
35.
A. G.
Redfield
, “
On the theory of relaxation processes
,”
IBM J. Res. Dev.
1
(
1
),
19
31
(
1957
).
36.
G.
Ithier
, “
Manipulation, readout and analysis of the decoherence of a superconducting quantum bit
,” Ph.D. thesis, Université Pierre et Marie Curie - Paris VI,
2005
.
37.
T.
Kanne
,
M.
Marnauza
,
D.
Olsteins
,
D. J.
Carrad
,
J. E.
Sestoft
,
J.
de Bruijckere
,
L.
Zeng
,
E.
Johnson
,
E.
Olsson
,
K.
Grove-Rasmussen
, and
J.
Nygård
, “
Epitaxial Pb on InAs nanowires for quantum devices
,”
Nat. Nanotechnol.
16
(
7
),
776
781
(
2021
).

Supplementary Material

You do not currently have access to this content.