Incorporating a micrometer scale strip as the sensitive element in superconducting single-photon detectors can lead to significant improvements in their speed, footprint, and fabrication yield. However, the current application of microstrips has resulted in a decline in the detectors' intrinsic detection efficiency. We address this issue through the utilization of niobium nitride films with high values of resistance per square. Notably, the films used in our study possess an important characteristic of retaining high critical temperature values, which enables the devices to operate in conventional closed-cycle cryostats.

1.
G.
Gol'Tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
K.
Smirnov
,
B.
Voronov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
, “
Picosecond superconducting single-photon optical detector
,”
Appl. Phys. Lett.
79
,
705
707
(
2001
).
2.
E. E.
Wollman
,
V. B.
Verma
,
A. D.
Beyer
,
R. M.
Briggs
,
B.
Korzh
,
J. P.
Allmaras
,
F.
Marsili
,
A. E.
Lita
,
R.
Mirin
,
S.
Nam
et al, “
UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature
,”
Opt. Express
25
,
26792
26801
(
2017
).
3.
F.
Marsili
,
F.
Bellei
,
F.
Najafi
,
A. E.
Dane
,
E. A.
Dauler
,
R. J.
Molnar
, and
K. K.
Berggren
, “
Efficient single photon detection from 500 nm to 5 μm wavelength
,”
Nano Lett.
12
,
4799
4804
(
2012
).
4.
A.
Vetter
,
S.
Ferrari
,
P.
Rath
,
R.
Alaee
,
O.
Kahl
,
V.
Kovalyuk
,
S.
Diewald
,
G. N.
Goltsman
,
A.
Korneev
,
C.
Rockstuhl
et al, “
Cavity-enhanced and ultrafast superconducting single-photon detectors
,”
Nano Lett.
16
,
7085
7092
(
2016
).
5.
G.
Goltsman
,
A.
Korneev
,
V.
Izbenko
,
K.
Smirnov
,
P.
Kouminov
,
B.
Voronov
,
N.
Kaurova
,
A.
Verevkin
,
J.
Zhang
,
A.
Pearlman
et al, “
Nano-structured superconducting single-photon detectors
,”
Nucl. Instrum. Methods Phys. Res. Sect., A
520
,
527
529
(
2004
).
6.
B.
Korzh
,
Q.-Y.
Zhao
,
J. P.
Allmaras
,
S.
Frasca
,
T. M.
Autry
,
E. A.
Bersin
,
A. D.
Beyer
,
R. M.
Briggs
,
B.
Bumble
,
M.
Colangelo
et al, “
Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector
,”
Nat. Photonics
14
,
250
255
(
2020
).
7.
P.-A.
Moreau
,
E.
Toninelli
,
T.
Gregory
, and
M. J.
Padgett
, “
Imaging with quantum states of light
,”
Nat. Rev. Phys.
1
,
367
380
(
2019
).
8.
M.
Unternährer
,
B.
Bessire
,
L.
Gasparini
,
M.
Perenzoni
, and
A.
Stefanov
, “
Super-resolution quantum imaging at the Heisenberg limit
,”
Optica
5
,
1150
1154
(
2018
).
9.
S.
Wang
,
Z.-Q.
Yin
,
D.-Y.
He
,
W.
Chen
,
R.-Q.
Wang
,
P.
Ye
,
Y.
Zhou
,
G.-J.
Fan-Yuan
,
F.-X.
Wang
,
Y.-G.
Zhu
et al, “
Twin-field quantum key distribution over 830-km fibre
,”
Nat. Photonics
16
,
154
161
(
2022
).
10.
N.
Ozana
,
A. I.
Zavriyev
,
D.
Mazumder
,
M. B.
Robinson
,
K.
Kaya
,
M. H.
Blackwell
,
S. A.
Carp
, and
M. A.
Franceschini
, “
Superconducting nanowire single-photon sensing of cerebral blood flow
,”
Neurophotonics
8
,
035006
(
2021
).
11.
M.
Colangelo
,
A. B.
Walter
,
B. A.
Korzh
,
E.
Schmidt
,
B.
Bumble
,
A. E.
Lita
,
A. D.
Beyer
,
J. P.
Allmaras
,
R. M.
Briggs
,
A. G.
Kozorezov
et al, “
Large-area superconducting nanowire single-photon detectors for operation at wavelengths up to 7.4 μm
,”
Nano Lett.
22
,
5667
5673
(
2022
).
12.
A. J.
Kerman
,
E. A.
Dauler
,
W. E.
Keicher
,
J. K.
Yang
,
K. K.
Berggren
,
G.
Gol'Tsman
, and
B.
Voronov
, “
Kinetic-inductance-limited reset time of superconducting nanowire photon counters
,”
Appl. Phys. Lett.
88
,
111116
(
2006
).
13.
R.
Gaudio
,
J. J.
Renema
,
Z.
Zhou
,
V. B.
Verma
,
A. E.
Lita
,
J.
Shainline
,
M. J.
Stevens
,
R. P.
Mirin
,
S. W.
Nam
,
M. P.
Van Exter
et al, “
Experimental investigation of the detection mechanism in WSi nanowire superconducting single photon detectors
,”
Appl. Phys. Lett.
109
,
031101
(
2016
).
14.
A.
Zotova
and
D. Y.
Vodolazov
, “
Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach
,”
Phys. Rev. B
85
,
024509
(
2012
).
15.
Y. P.
Korneeva
,
D. Y.
Vodolazov
,
A.
Semenov
,
I.
Florya
,
N.
Simonov
,
E.
Baeva
,
A.
Korneev
,
G.
Goltsman
, and
T.
Klapwijk
, “
Optical single-photon detection in micrometer-scale NBN bridges
,”
Phys. Rev. Appl.
9
,
064037
(
2018
).
16.
I.
Charaev
,
Y.
Morimoto
,
A.
Dane
,
A.
Agarwal
,
M.
Colangelo
, and
K. K.
Berggren
, “
Large-area microwire MoSi single-photon detectors at 1550 nm wavelength
,”
Appl. Phys. Lett.
116
,
242603
(
2020
).
17.
J.
Chiles
,
S. M.
Buckley
,
A.
Lita
,
V. B.
Verma
,
J.
Allmaras
,
B.
Korzh
,
M. D.
Shaw
,
J. M.
Shainline
,
R. P.
Mirin
, and
S. W.
Nam
, “
Superconducting microwire detectors based on WSi with single-photon sensitivity in the near-infrared
,”
Appl. Phys. Lett.
116
,
242602
(
2020
).
18.
K.
Smirnov
,
A.
Divochiy
,
Y.
Vakhtomin
,
P.
Morozov
,
P.
Zolotov
,
A.
Antipov
, and
V.
Seleznev
, “
NBN single-photon detectors with saturated dependence of quantum efficiency
,”
Supercond. Sci. Technol.
31
,
035011
(
2018
).
19.
J. J.
Renema
, “
The physics of nanowire superconducting single-photon detectors
,” Ph.D. thesis (
Leiden University
,
2015
).
20.
A. D.
Semenov
, “
Superconducting nanostrip single-photon detectors some fundamental aspects in detection mechanism, technology and performance
,”
Supercond. Sci. Technol.
34
,
054002
(
2021
).
21.
D. Y.
Vodolazov
, “
Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach
,”
Phys. Rev. Appl.
7
,
034014
(
2017
).
22.
P. I.
Zolotov
,
A. V.
Semenov
,
A. V.
Divochiy
,
G. N.
Goltsman
,
N. R.
Romanov
, and
T. M.
Klapwijk
, “
Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of nbn
,”
IEEE Trans. Appl. Supercond.
31
,
1
5
(
2021
).
23.
I.
Esmaeil Zadeh
,
J.
Chang
,
J. W.
Los
,
S.
Gyger
,
A. W.
Elshaari
,
S.
Steinhauer
,
S. N.
Dorenbos
, and
V.
Zwiller
, “
Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications
,”
Appl. Phys. Lett.
118
,
190502
(
2021
).
24.
Y. P.
Korneeva
,
N.
Manova
,
M.
Dryazgov
,
N.
Simonov
,
P. I.
Zolotov
, and
A.
Korneev
, “
Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders
,”
Supercond. Sci. Technol.
34
,
084001
(
2021
).
25.
G.-Z.
Xu
,
W.-J.
Zhang
,
L.-X.
You
,
J.-M.
Xiong
,
X.-Q.
Sun
,
H.
Huang
,
X.
Ou
,
Y.-M.
Pan
,
C.-L.
Lv
,
H.
Li
et al, “
Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm
,”
Photonics Res.
9
,
958
967
(
2021
).
26.
A. E.
Dane
,
A. N.
McCaughan
,
D.
Zhu
,
Q.
Zhao
,
C.-S.
Kim
,
N.
Calandri
,
A.
Agarwal
,
F.
Bellei
, and
K. K.
Berggren
, “
Bias sputtered NBN and superconducting nanowire devices
,”
Appl. Phys. Lett.
111
,
122601
(
2017
).
27.
A. N.
McCaughan
,
A. N.
Tait
,
S. M.
Buckley
,
D. M.
Oh
,
J. T.
Chiles
,
J. M.
Shainline
, and
S. W.
Nam
, “
PHIDL: Python-based layout and geometry creation for nanolithography
,”
J. Vacuum Sci. Technol. B
39
,
062601
(
2021
).
28.
A.
Lomakin
,
E.
Baeva
,
A.
Triznova
,
N.
Titova
,
P.
Zolotov
,
A.
Semenov
,
D.
Sunegin
,
A.
Lubenchenko
,
A.
Kolbatova
, and
G.
Goltsman
, “
Evidence of the disorder-independent electron-phonon scattering time in thin NbN films
,”
Phys. Rev. B
107
,
054205
(
2023
).
You do not currently have access to this content.