Magnetic tunnel junction (MTJ) based on van der Waals (vdW) magnetic layers has been found to present excellent tunneling magnetoresistance (TMR) property, which has great potential applications in field sensing, nonvolatile magnetic random access memories, and spin logics. Although MTJs composed of multilayer vdW magnetic homojunction have been extensively investigated, the ones composed of vdW magnetic heterojunction are still to be explored. Here, we use first-principles approaches to reveal that the magnetic heterojunction MTJs have much more distinguishable TMR values than the homojunction ones. In the MTJ composed of bilayer CrI3/bilayer Cr2Ge2Te6 heterojunction, we find there are eight stable magnetic states, leading to six distinguishable electronic resistances. As a result, five sizable TMRs larger than 300% can be obtained (the maximum TMR is up to 620 000%). Six distinguishable memories are obtained, which is two times larger than that of a four-layered homojunction MTJ. The underlying relationships among magnetic state, spin-polarized band structures, and transmission spectra are further revealed to explain the multiple TMR values. We also find that the magnetic states, and thus TMRs, can be efficiently modulated by an external electric field. This study opens an avenue to the design of high-performance MTJ devices based on vdW heterojunctions.

1.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N.
van Dau
,
F.
Petroff
,
P.
Etienne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
,
Phys. Rev. Lett.
61
,
2472
(
1988
).
2.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
,
4828(R)
(
1989
).
3.
S.
Yuasa
,
T.
Nagahama
,
A.
Fukushima
,
Y.
Suzuki
, and
K.
Ando
,
Nat. Mater.
3
,
868
(
2004
).
4.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
5.
S.
Ikeda
,
J.
Hayakawa
,
Y.
Ashizawa
,
Y. M.
Lee
,
K.
Miura
,
H.
Hasegawa
,
M.
Tsunoda
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
93
,
082508
(
2008
).
6.
F.
Schleicher
,
U.
Halisdemir
,
D.
Lacour
,
M.
Gallart
,
S.
Boukari
,
G.
Schmerber
,
V.
Davesne
,
P.
Panissod
,
D.
Halley
,
H.
Majjad
,
Y.
Henry
,
B.
Leconte
,
A.
Boulard
,
D.
Spor
,
N.
Beyer
,
C.
Kieber
,
E.
Sternitzky
,
O.
Cregut
,
M.
Ziegler
,
F.
Montaigne
,
E.
Beaurepaire
,
P.
Gilliot
,
M.
Hehn
, and
M.
Bowen
,
Nat. Commun.
5
,
4547
(
2014
).
7.
N.
Maciel
,
E.
Marques
,
L.
Naviner
,
Y.
Zhou
, and
H.
Cai
,
Sensors
20
,
121
(
2019
).
8.
B.
Jinnai
,
K.
Watanabe
,
S.
Fukami
, and
H.
Ohno
,
Appl. Phys. Lett.
116
,
160501
(
2020
).
9.
D.
Waldron
,
V.
Timoshevskii
,
Y.
Hu
,
K.
Xia
, and
H.
Guo
,
Phys. Rev. Lett.
97
,
226802
(
2006
).
10.
T.
Scheike
,
Q.
Xiang
,
Z.
Wen
,
H.
Sukegawa
,
T.
Ohkubo
,
K.
Hono
, and
S.
Mitani
,
Appl. Phys. Lett.
118
,
042411
(
2021
).
11.
M.
Wang
,
W.
Cai
,
D.
Zhu
,
Z.
Wang
,
J.
Kan
,
Z.
Zhao
,
K.
Cao
,
Z.
Wang
,
Y.
Zhang
,
T.
Zhang
,
C.
Park
,
J.-P.
Wang
,
A.
Fert
, and
W.
Zhao
,
Nat. Electron.
1
,
582
(
2018
).
12.
S.
Shi
,
Y.
Ou
,
S. V.
Aradhya
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Appl.
9
,
011002
(
2018
).
13.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
,
Rev. Mod. Phys.
91
,
035004
(
2019
).
14.
C. O.
Avci
,
M.
Mann
,
A. J.
Tan
,
P.
Gambardella
, and
G. S. D.
Beach
,
Appl. Phys. Lett.
110
,
203506
(
2017
).
15.
T.
Song
,
Q.
Sun
,
E.
Anderson
,
C.
Wang
,
J.
Qian
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
R.
Stöhr
,
D.
Xiao
,
T.
Cao
,
J.
Wrachtrup
, and
X.
Xu
,
Science
360
,
1214
(
2018
).
16.
T.
Song
,
M. W.
Tu
,
C.
Carnahan
,
X.
Cai
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
D. H.
Cobden
,
D.
Xiao
,
W.
Yao
, and
X.
Xu
,
Nano Lett.
19
,
915
(
2019
).
17.
L.
Zhang
,
T.
Li
,
J.
Li
,
Y.
Jiang
,
J.
Yuan
, and
H.
Li
,
J. Phys. Chem. C
124
,
27429
(
2020
).
18.
Y.
Su
,
X.
Li
,
M.
Zhu
,
J.
Zhang
,
L.
You
, and
E. Y.
Tsymbal
,
Nano Lett.
21
,
175
(
2021
).
19.
J.
Yang
,
S.
Fang
,
Y.
Peng
,
S.
Liu
,
B.
Wu
,
R.
Quhe
,
S.
Ding
,
C.
Yang
,
J.
Ma
,
B.
Shi
,
L.
Xu
,
X.
Sun
,
G.
Tian
,
C.
Wang
,
J.
Shi
,
J.
Lu
, and
J.
Yang
,
Phys. Rev. Appl.
16
,
024011
(
2021
).
20.
C.
Hu
,
D.
Zhang
,
F.
Yan
,
Y.
Li
,
Q.
Lv
,
W.
Zhu
,
Z.
Wei
,
K.
Chang
, and
K.
Wang
,
Sci. Bull.
65
,
1072
(
2020
).
21.
W.
Zhu
,
H.
Lin
,
F.
Yan
,
C.
Hu
,
Z.
Wang
,
L.
Zhao
,
Y.
Deng
,
Z. R.
Kudrynskyi
,
T.
Zhou
,
Z. D.
Kovalyuk
,
Y.
Zheng
,
A.
Patanè
,
I.
Žutić
,
S.
Li
,
H.
Zheng
, and
K.
Wang
,
Adv. Mater.
33
,
2104658
(
2021
).
22.
D.
Li
,
T.
Frauenheim
, and
J.
He
,
ACS Appl. Mater. Interfaces
13
,
36098
(
2021
).
23.
H.
Zhou
,
Y.
Zhang
, and
W.
Zhao
,
ACS Appl. Mater. Interfaces
13
,
1214
(
2021
).
24.
L.
Cao
,
X.
Deng
,
G.
Zhou
,
S.
Liang
,
C. V.
Nguyen
,
L. K.
Ang
, and
Y. S.
Ang
,
Phys. Rev. B
105
,
165302
(
2022
).
25.
B.
Wu
,
J.
Yang
,
R.
Quhe
,
S.
Liu
,
C.
Yang
,
Q.
Li
,
J.
Ma
,
Y.
Peng
,
S.
Fang
,
J.
Shi
,
J.
Yang
,
J.
Lu
, and
H.
Du
,
Phys. Rev. Appl.
17
,
034030
(
2022
).
26.
R.
Xu
and
X.
Zou
,
J. Phys. Chem. Lett.
11
,
3152
(
2020
).
27.
Y. F.
Li
,
W.
Wang
,
W.
Guo
,
C. Y.
Gu
,
H. Y.
Sun
,
L.
He
,
J.
Zhou
,
Z. B.
Gu
,
Y. F.
Nie
, and
X. Q.
Pan
,
Phys. Rev. B
98
,
125127
(
2018
).
28.
P.
Li
,
X.
Zhou
, and
Z.
Guo
,
npj Comput. Mater.
8
,
20
(
2022
).
30.
Y. B.
Band
and
Y.
Avishai
,
Quantum Mechanics with Applications to Nanotechnology and Information Science
(
Academic Press
,
Amsterdam
,
2013
), pp.
303
366
.
32.
S.
Shen
,
P. R.
Ohodnicki
,
S. J.
Kernion
, and
M. E.
McHenry
,
J. Appl. Phys.
112
,
103705
(
2012
).
33.
T.
Song
,
Z.
Fei
,
M.
Yankowitz
,
Z.
Lin
,
Q.
Jiang
,
K.
Hwangbo
,
Q.
Zhang
,
B.
Sun
,
T.
Taniguchi
,
K.
Watanabe
,
M. A.
McGuire
,
D.
Graf
,
T.
Cao
,
J.
Chu
,
D. H.
Cobden
,
C. R.
Dean
,
D.
Xiao
, and
X.
Xu
,
Nat. Mater.
18
,
1298
1302
(
2019
).
34.
B.
Huang
,
G.
Clark
,
D. R.
Klein
,
D.
MacNeill
,
E.
Navarro-Moratalla
,
K. L.
Seyler
,
N.
Wilson
,
M. A.
McGuire
,
D. H.
Cobden
,
D.
Xiao
,
W.
Yao
,
P.
Jarillo-Herrero
, and
X.
Xu
,
Nat. Nanotech.
13
,
544
(
2018
).

Supplementary Material

You do not currently have access to this content.