AgNbO3 (ANO)-based lead-free antiferroelectric ceramics with high energy storage density show potential application in pulsed power systems. Structural heterogeneity via doping different ions offers an effective route to explore high performance dielectric materials. The effect of A-site and B-site modified ANO-based ceramics at the same doping amount of 50% on ferroelectricity was investigated. The result shows that the A/B site structural heterogeneities both improved relaxor features, which make a great contribution to the energy storage efficiency, while the B-site modification shows a more effective influence on the structure, grain growth, and ferroelectricity regulation. In this case, the optimized recoverable energy storage density of 2.6 J/cc with an improved efficiency of 87.6% was achieved in the Ta-ANO component.

1.
H.
Pan
,
S.
Lan
,
S.
Xu
,
Q.
Zhang
,
H.
Yao
,
Y.
Liu
,
F.
Meng
,
E.-J.
Guo
,
L.
Gu
,
D.
Yi
,
X. R.
Wang
,
H.
Huang
,
J. L.
MacManus-Driscoll
,
L.-Q.
Chen
,
K.-J.
Jin
,
C.-W.
Nan
, and
Y.-H.
Lin
,
Science
374
(
6563
),
100
(
2021
).
2.
H.
Pan
,
F.
Li
,
Y.
Liu
,
Q.
Zhang
,
M.
Wang
,
S.
Lan
,
Y.
Zheng
,
J.
Ma
,
L.
Gu
,
Y.
Shen
,
P.
Yu
,
S.
Zhang
,
L.-Q.
Chen
,
Y.-H.
Lin
, and
C.-W.
Nan
,
Science
365
(
6453
),
578
(
2019
).
3.
B.
Yang
,
Y.
Zhang
,
H.
Pan
,
W.
Si
,
Q.
Zhang
,
Z.
Shen
,
Y.
Yu
,
S.
Lan
,
F.
Meng
,
Y.
Liu
,
H.
Huang
,
J.
He
,
L.
Gu
,
S.
Zhang
,
L.-Q.
Chen
,
J.
Zhu
,
C.-W.
Nan
, and
Y.-H.
Lin
,
Nat. Mater.
21
(
9
),
1074
(
2022
).
4.
Y. Y.
Chen
,
J. L.
Qi
,
M. H.
Zhang
,
Z. X.
Luo
, and
Y. H.
Lin
,
J. Adv. Ceram.
11
(
7
),
1179
(
2022
).
5.
J.
Qi
,
M.
Zhang
,
Y.
Chen
,
Z.
Luo
,
P.
Zhao
,
H.
Su
,
J.
Wang
,
H.
Wang
,
L.
Yang
,
H.
Pan
,
S.
Lan
,
Z.-H.
Shen
,
D.
Yi
, and
Y.-H.
Lin
,
Cell Rep. Phys. Sci.
3
(
11
),
101110
(
2022
).
6.
M.
Zhao
,
J.
Wang
,
H.
Yuan
,
Z.
Zheng
, and
L.
Zhao
,
ACS Appl. Mater. Interfaces
14
(
43
),
48926
48935
(
2022
).
7.
N.
Luo
,
K.
Han
,
F.
Zhuo
,
C.
Xu
,
G.
Zhang
,
L.
Liu
,
X.
Chen
,
C.
Hu
,
H.
Zhou
, and
Y.
Wei
,
J. Mater. Chem. A
7
(
23
),
14118
(
2019
).
8.
S.
Li
,
H. C.
Nie
,
G. S.
Wang
,
C. H.
Xu
,
N. T.
Liu
,
M. X.
Zhou
,
F.
Cao
, and
X. L.
Dong
,
J. Mater. Chem. C
7
(
6
),
1551
(
2019
).
9.
P.
Shi
,
X.
Wang
,
X.
Lou
,
C.
Zhou
,
Q.
Liu
,
L.
He
,
S.
Yang
, and
X.
Zhang
,
J. Alloys Compd.
877
,
160162
(
2021
).
10.
N.
Luo
,
K.
Han
,
M. J.
Cabral
,
X.
Liao
,
S.
Zhang
,
C.
Liao
,
G.
Zhang
,
X.
Chen
,
Q.
Feng
,
J.-F.
Li
, and
Y.
Wei
,
Nat. Commun.
11
(
1
),
4824
(
2020
).
11.
X.
Wang
,
P.
Ren
,
D.
Ren
,
L.
Xie
,
T.
Li
,
J.
Xu
,
Y.
Xi
, and
C.
Yang
,
Ceram. Int.
47
(
3
),
3699
(
2021
).
12.
J.
Ai
,
X.
Chen
,
L.
Luo
,
R.
Zheng
, and
L.
Yu
,
Ceram. Int.
48
(
16
),
23630
(
2022
);
H.
Ran
,
H.
Du
,
C.
Ma
,
Y.
Zhao
,
D.
Feng
, and
H.
Xu
,
Sci. Adv. Mater.
13
(
5
),
741
(
2021
).
13.
V. M.
Goldschmidt
,
Naturwissenschaften
14
,
477
(
1926
).
14.
J.
Qi
,
M.
Cao
,
Y.
Chen
,
Y.
Fang
,
W.
Pan
,
H.
Hao
,
Z.
Yao
,
Z.
Yu
, and
H.
Liu
,
J. Alloys Compd.
762
,
950
(
2018
);
J.
Qi
,
M.
Cao
,
Y.
Chen
,
H.
Hao
,
Z.
Yao
, and
H.
Liu
,
J. Alloys Compd.
782
,
51
(
2019
);
J.
Qi
,
M.
Cao
,
Y.
Chen
,
Z.
He
,
C.
Tao
,
H.
Hao
,
Z.
Yao
, and
H.
Liu
,
J. Alloys Compd.
772
,
1105
(
2019
).
15.
I.
Levin
,
J. C.
Woicik
,
A.
Llobet
,
M. G.
Tucker
,
V.
Krayzman
,
J.
Pokorny
, and
I. M.
Reaney
,
Chem. Mater.
22
(
17
),
4987
(
2010
).
16.
M.
Yashima
,
S.
Matsuyama
,
R.
Sano
,
M.
Itoh
,
K.
Tsuda
, and
D.
Fu
,
Chem. Mater.
23
(
7
),
1643
(
2011
).
17.
H. U.
Khan
,
K.
Alam
,
M.
Mateenullah
,
T.
Blaschke
, and
B. S.
Haq
,
J. Eur. Ceram. Soc.
35
(
10
),
2775
(
2015
).
18.
Q.
Lou
,
X.
Shi
,
X.
Ruan
,
J.
Zeng
,
Z.
Man
,
L.
Zheng
,
C. H.
Park
, and
G.
Li
,
J. Am. Ceram. Soc.
101
(
8
),
3597
(
2018
).
19.
Y.
Tian
,
L.
Jin
,
H. F.
Zhang
,
Z.
Xu
,
X. Y.
Wei
,
E. D.
Politova
,
S. Y.
Stefanovich
,
N. V.
Tarakina
,
I.
Abrahams
, and
H. X.
Yan
,
J. Mater. Chem. A
4
(
44
),
17279
(
2016
).
You do not currently have access to this content.