Endowing bulk electrocaloric polymers with excellent thermal conductivity is a superior solution to the high-efficient and precise management of tremendous heat from high-power-density electronic devices. Semi-crystalline polymer P(VDF-TrFE-CFE), i.e., poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), has a predominant amorphous phase of randomly entangled chains and abundant interface, leading to localized behavior in phonon heat conduction and thereby low thermal conductivity. To enhance the thermal transport performance, electrocaloric polymer films were mechanically stretched or fabricated by electrospun to achieve highly aligned molecular chains. Chain orientation brought about a 2.4- and 1.6-times increase in the thermal diffusion coefficient of the stretched and electrospun films, respectively. Interestingly, after mechanical stretching, the thermal conductivity of the film was increased by a factor of two. In contrast, the electrospun film had a slightly lower thermal conductivity than that of the unoriented one. A remarkable discrepancy in the electrocaloric properties was observed, where the stretched polymer film reached a much higher adiabatic temperature change under an applied electric field than that of the electrospun film. Our strategy provides a perspective on designing a promising thermal management system through the integration of active refrigeration and passive heat dissipation in bulk electrocaloric polymers.

1.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
,
163
174
(
2014
).
2.
K. N.
Tu
,
Y.
Liu
, and
M.
Li
,
Appl. Phys. Rev.
4
,
011101
(
2017
).
3.
C.
Cazorla
,
Appl. Phys. Rev.
6
,
041316
(
2019
).
4.
B.
Neese
,
B.
Chu
,
S.-G.
Lu
,
Y.
Wang
,
E.
Furman
, and
Q. M.
Zhang
,
Science
321
,
821
823
(
2008
).
5.
X.
Qian
,
D.
Han
,
L.
Zheng
,
J.
Chen
,
M.
Tyagi
,
Q.
Li
,
F.
Du
,
S.
Zheng
,
X.
Huang
,
S.
Zhang
,
J.
Shi
,
H.
Huang
,
X.
Shi
,
J.
Chen
,
H.
Qin
,
J.
Bernholc
,
X.
Chen
,
L.-Q.
Chen
,
L.
Hong
, and
Q. M.
Zhang
,
Nature
600
,
664
669
(
2021
).
6.
R. J.
Ma
,
Z. Y.
Zhang
,
K. W.
Tong
,
D.
Huber
,
R.
Kornbluh
,
Y. S.
Ju
, and
Q. B.
Pei
,
Science
357
,
1130
1134
(
2017
).
7.
J.
Li
,
D.
Zhang
,
S.
Qin
,
T.
Li
,
M.
Wu
,
D.
Wang
,
Y.
Bai
, and
X.
Lou
,
Acta Mater.
115
,
58
67
(
2016
).
8.
Y.
Liu
,
X.
Chen
,
Z.
Han
,
H.
Zhou
, and
Q.
Wang
,
Appl. Phys. Rev.
9
,
031306
(
2022
).
9.
X.
Chen
,
W.
Xu
,
B.
Lu
,
T.
Zhang
,
Q.
Wang
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
113
,
113902
(
2018
).
10.
G.
Zhang
,
Q.
Li
,
H.
Gu
,
S.
Jiang
,
K.
Han
,
M. R.
Gadinski
,
M. A.
Haque
,
Q.
Zhang
, and
Q.
Wang
,
Adv. Mater.
27
,
1450
1454
(
2015
).
11.
G.
Zhang
,
L.
Weng
,
Z.
Hu
,
Y.
Liu
,
R.
Bao
,
P.
Zhao
,
H.
Feng
,
N.
Yang
,
M. Y.
Li
,
S.
Zhang
,
S.
Jiang
, and
Q.
Wang
,
Adv. Mater.
31
,
e1806642
(
2019
).
12.
H.
Chen
,
V. V.
Ginzburg
,
J.
Yang
,
Y.
Yang
,
W.
Liu
,
Y.
Huang
,
L.
Du
, and
B.
Chen
,
Prog. Polym. Sci.
59
,
41
85
(
2016
).
13.
K.
Wu
,
J.
Wang
,
D.
Liu
,
C.
Lei
,
D.
Liu
,
W.
Lei
, and
Q.
Fu
,
Adv. Mater.
32
,
e1906939
(
2020
).
14.
Q.
Yan
,
W.
Dai
,
J.
Gao
,
X.
Tan
,
L.
Lv
,
J.
Ying
,
X.
Lu
,
J.
Lu
,
Y.
Yao
,
Q.
Wei
,
R.
Sun
,
J.
Yu
,
N.
Jiang
,
D.
Chen
,
C. P.
Wong
,
R.
Xiang
,
S.
Maruyama
, and
C. T.
Lin
,
ACS Nano
15
,
6489
6498
(
2021
).
15.
M. D.
Li
,
X. Q.
Shen
,
X.
Chen
,
J. M.
Gan
,
F.
Wang
,
J.
Li
,
X. L.
Wang
, and
Q. D.
Shen
,
Nat. Commun.
13
,
5849
(
2022
).
16.
J.
Chen
,
Z.
Shen
,
Q.
Kang
,
X.
Qian
,
S.
Li
,
P.
Jiang
, and
X.
Huang
,
Sci. Bull.
67
,
609
618
(
2022
).
17.
S.
Deng
,
J.
Yuan
,
Y.
Lin
,
X.
Yu
,
D.
Ma
,
Y.
Huang
,
R.
Ji
,
G.
Zhang
, and
N.
Yang
,
Nano Energy
82
,
105749
(
2021
).
18.
F.
Guan
,
J.
Wang
,
J.
Pan
,
Q.
Wang
, and
L.
Zhu
,
Macromolecules
43
,
6739
6748
(
2010
).
19.
X.
Chen
,
H.
Qin
,
X.
Qian
,
W.
Zhu
,
B.
Li
,
B.
Zhang
,
W.
Lu
,
R.
Li
,
S.
Zhang
,
L.
Zhu
,
F. D. D.
Santos
,
J.
Bernholc
, and
Q. M.
Zhang
,
Science
375
,
1418
1422
(
2022
).

Supplementary Material

You do not currently have access to this content.