Various wireless sensors in the Internet of Things (IoT) systems have been adopted in ocean exploration, with increasing energy supply concern. Regarding the marine environment, self-powered sensors utilizing ambient flow and wave energy can increase maintainability with a long lifespan. However, the current underwater piezoelectric energy harvesters made of piezoelectric ceramics suffer from low power density (<0.5 mW cm−3 m−1 s). In this paper, we proposed a vortex-induction underwater piezoelectric energy harvester based on a Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) single crystal macro-fiber composite (MFC). The single crystal MFC shows mechanical flexibility in which the volume fraction of the piezoelectric phase is 70%. Regarding the structure design, a bicylinder configuration with a ladder-shaped cantilever is employed for decreasing the resonant frequency of the underwater piezoelectric energy harvester and enhancing vortex force during fluid–structure interaction process. The designed underwater energy harvester exhibits a high output voltage of 54 Vpp at 0.9 m/s flow in the designed underwater energy harvesting test platform. Due to the high figure-of-merit d 32 × g 32 (7.65 × 10−11 m2/N) of the single crystal, the maximum output power reaches 62 μW under the flow speed of 0.9 m/s. The normalized power density is 1.1 mW cm−3 m−1 s, being 2.3 times larger than that of the state-of-the-art PZT ceramics-based underwater energy harvester. This work will help to mitigate the energy crisis of the IoT system, promoting the development of underwater equipment.

1.
S. K.
Karan
,
S.
Maiti
,
J. H.
Lee
,
Y. K.
Mishra
,
B. B.
Khatua
, and
J. K.
Kim
,
Adv. Funct. Mater.
30
,
2004446
(
2020
).
2.
N.
Hossein Motlagh
,
M.
Mohammadrezaei
,
J.
Hunt
, and
B.
Zakeri
,
Energies
13
,
494
(
2020
).
3.
M.
Asam
,
S. H.
Khan
,
A.
Akbar
,
S.
Bibi
,
T.
Jamal
,
A.
Khan
,
U.
Ghafoor
, and
M. R.
Bhutta
,
Sci. Rep.
12
,
15498
(
2022
).
4.
G.
Li
,
X.
Chen
,
F.
Zhou
,
Y.
Liang
,
Y.
Xiao
,
X.
Cao
,
Z.
Zhang
,
M.
Zhang
,
B.
Wu
,
S.
Yin
,
Y.
Xu
,
H.
Fan
,
Z.
Chen
,
W.
Song
,
W.
Yang
,
B.
Pan
,
J.
Hou
,
W.
Zou
,
S.
He
,
X.
Yang
,
G.
Mao
,
Z.
Jia
,
H.
Zhou
,
T.
Li
,
S.
Qu
,
Z.
Xu
,
Z.
Huang
,
Y.
Luo
,
T.
Xie
,
J.
Gu
,
S.
Zhu
, and
W.
Yang
,
Nature
591
,
66
71
(
2021
).
5.
D.
Leng
,
S.
Shao
,
Y.
Xie
,
H.
Wang
, and
G.
Liu
,
Ocean Eng.
228
,
108565
(
2021
).
6.
W.
Luo
,
H.
Dong
,
J.
Xu
,
J.
Ge
,
H.
Liu
, and
C.
Zhang
,
Sens. Actuators, A
301
,
111730
(
2020
).
7.
Q.
Yang
,
Q.
Li
,
Z.
Liu
,
D.
Wang
,
Y.
Guo
,
X.
Li
,
Y.
Tang
,
H.
Li
,
B.
Dong
, and
C.
Zhi
,
Adv Mater.
32
,
2001854
(
2020
).
8.
Y.
Wang
,
X.
Liu
,
Y.
Wang
,
H.
Wang
,
H.
Wang
,
S. L.
Zhang
,
T.
Zhao
,
M.
Xu
, and
Z. L.
Wang
,
ACS Nano
15
,
15700
15709
(
2021
).
9.
K.
Munirathinam
,
D.
Kim
,
A.
Shanmugasundaram
,
J.
Park
,
Y.
Jeong
, and
D.
Lee
,
Nano Energy
102
,
107675
(
2022
).
10.
H.
Shao
,
P.
Cheng
,
R.
Chen
,
L.
Xie
,
N.
Sun
,
Q.
Shen
,
X.
Chen
,
Q.
Zhu
,
Y.
Zhang
,
Y.
Liu
,
Z.
Wen
, and
X.
Sun
,
Nano-Micro Lett.
10
,
54
(
2018
).
11.
W.
Sun
,
D.
Zhao
,
T.
Tan
,
Z.
Yan
,
P.
Guo
, and
X.
Luo
,
Appl. Energy
251
,
113392
(
2019
).
12.
W.
Sun
,
T.
Tan
,
Z.
Yan
,
D.
Zhao
,
X.
Luo
, and
W.
Huang
,
AIP Adv.
8
,
95107
(
2018
).
13.
T.
Narolia
,
V. K.
Gupta
, and
I. A.
Parinov
,
J. Adv. Dielectr.
10
(
3
),
2050008
(
2020
).
14.
Z.
Yang
,
S.
Zhou
,
J.
Zu
, and
D.
Inman
,
Joule
2
,
642
679
(
2018
).
15.
Y.
Hu
,
B.
Yang
,
X.
Chen
,
X.
Wang
, and
J.
Liu
,
Energy Convers. Manage.
162
,
145
158
(
2018
).
16.
Y.
Hu
,
F.
Mou
,
B.
Yang
,
X.
Chen
,
X.
Wang
, and
J.
Liu
,
AIP Adv.
8
,
125214
(
2018
).
17.
G. W.
Taylor
,
J. R.
Burns
,
S. A.
Kammann
,
W. B.
Powers
, and
T. R.
Welsh
,
IEEE J. Oceanic Eng.
26
,
539
547
(
2001
).
18.
X.
Shan
,
R.
Song
,
B.
Liu
, and
T.
Xie
,
Ceram Int.
41
,
S763
S767
(
2015
).
19.
R.
Song
,
X.
Shan
,
F.
Lv
,
J.
Li
, and
T.
Xie
,
Appl. Sci.
5
,
1942
1954
(
2015
).
20.
X.
Yuan
,
X.
Gao
,
X.
Shen
,
J.
Yang
,
Z.
Li
, and
S.
Dong
,
Nano Energy
85
,
105985
(
2021
).
21.
Y. W.
Yang
,
L. H.
Tang
, and
H. Y.
Li
,
Smart Mater. Struct.
18
,
115025
(
2009
).
22.
B. A.
Butrym
,
M. H.
Kim
, and
D.
Inman
,
Strain
48
,
190
197
(
2012
).
23.
J.
Ryu
,
J.
Kang
,
Y.
Zhou
,
S.
Choi
,
W.
Yoon
,
D.
Park
,
J.
Choi
,
B.
Hahn
,
C.
Ahn
,
J.
Kim
,
Y.
Kim
,
S.
Priya
,
S. Y.
Lee
,
S.
Jeong
, and
D.
Jeong
,
Energy Environ. Sci.
8
,
2402
2408
(
2015
).
24.
V.
Annapureddy
,
M.
Kim
,
H.
Palneedi
,
H. Y.
Lee
,
S. Y.
Choi
,
W. H.
Yoon
,
D. S.
Park
,
J. J.
Choi
,
B. D.
Hahn
,
C. W.
Ahn
,
J. W.
Kim
,
D. Y.
Jeong
, and
J.
Ryu
,
Adv. Energy Mater.
6
,
1601244
(
2016
).
25.
H.
Li
,
C.
Tian
, and
Z. D.
Deng
,
Appl. Phys. Rev.
1
,
041301
(
2014
).
26.
D. B.
Deutz
,
J.
Pascoe
,
B.
Schelen
,
S.
van der Zwaag
,
D. M.
de Leeuw
, and
P.
Groen
,
Mater. Horiz.
5
,
444
453
(
2018
).
27.
H. C.
Song
,
S. W.
Kim
,
H. S.
Kim
,
D. G.
Lee
,
C. Y.
Kang
, and
S.
Nahm
,
Adv. Mater.
32
,
2002208
(
2020
).
28.
J.
Liu
,
X.
Gao
,
C.
Qiu
,
L.
Qiao
,
J.
Yang
,
M.
Ma
,
K.
Song
,
H.
Guo
,
Z.
Xu
, and
F.
Li
,
APL. Mater.
9
,
010703
(
2021
).
29.
X.
Gao
,
C.
Qiu
,
G.
Li
,
M.
Ma
,
S.
Yang
,
Z.
Xu
, and
F.
Li
,
Appl. Energy
271
,
115193
(
2020
).
30.
M.
Ma
,
S.
Xia
,
X. Y.
Gao
,
K. X.
Song
,
H. S.
Guo
,
F.
Li
,
Z.
Xu
, and
Z. R.
Li
,
Appl. Phys. Lett.
120
,
042902
(
2022
).
31.
K.
Song
,
Z.
Li
,
H.
Guo
,
Z.
Xu
, and
S.
Fan
,
J. Appl. Phys.
123
,
154107
(
2018
).
32.
F.
Li
,
L.
Jin
,
Z.
Xu
, and
Z. Q.
Guo
,
Rev. Sci. Instrum.
80
,
055108
(
2009
).
33.
IEEE
, “
IEEE standard on piezoelectricity
,” ANSI/IEEE Standard No. 176-1987 (
IEEE
,
1987
).
34.
N.
Jia
,
T.
Wang
,
J.
Duan
,
K.
Qiang
,
S.
Xia
,
H.
Du
,
F.
Li
, and
Z.
Xu
,
ACS Appl. Mater. Interfaces
14
,
8137
8145
(
2022
).
35.
Z.
Yu
,
J.
Yang
,
J.
Cao
,
L.
Bian
,
Z.
Li
,
X.
Yuan
,
Z.
Wang
,
Q.
Li
, and
S.
Dong
,
Adv. Funct. Mater.
32
,
2111140
(
2022
).
36.
R. A.
Islam
and
S.
Priya
,
J. Am. Ceram. Soc.
10
,
3147
(
2006
).

Supplementary Material

You do not currently have access to this content.