Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G. V.
de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa‐Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
2.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
, “
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres
,”
Nature
441
(
7091
),
325
328
(
2006
).
3.
T.
Kinoshita
,
T.
Nagashima
,
T.
Obata
,
S.
Takashima
,
R.
Yamamoto
,
R.
Togashi
,
Y.
Kumagai
,
R.
Schlesser
,
R.
Collazo
,
A.
Koukitu
, and
Z.
Sitar
, “
Fabrication of vertical Schottky barrier diodes on n-type freestanding AlN substrates grown by hydride vapor phase epitaxy
,”
Appl. Phys. Express
8
(
6
),
061003
(
2015
).
4.
J. B.
Varley
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Defects in AlN as candidates for solid-state qubits
,”
Phys. Rev. B
93
(
16
),
161201
(
2016
).
5.
R.
Collazo
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
R.
Dalmau
, and
Z.
Sitar
, “
Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications
,”
Phys. Status Solidi C
8
(
7–8
),
2031
2033
(
2011
).
6.
I.
Bryan
,
Z.
Bryan
,
S.
Washiyama
,
P.
Reddy
,
B.
Gaddy
,
B.
Sarkar
,
M. H.
Breckenridge
,
Q.
Guo
,
M.
Bobea
,
J.
Tweedie
,
S.
Mita
,
D.
Irving
,
R.
Collazo
, and
Z.
Sitar
, “
Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
,”
Appl. Phys. Lett.
112
(
6
),
062102
(
2018
).
7.
F.
Kaess
,
S.
Mita
,
J.
Xie
,
P.
Reddy
,
A.
Klump
,
L. H.
Hernandez-Balderrama
,
S.
Washiyama
,
A.
Franke
,
R.
Kirste
,
A.
Hoffmann
,
R.
Collazo
, and
Z.
Sitar
, “
Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition
,”
J. Appl. Phys.
120
(
10
),
105701
(
2016
).
8.
P.
Bagheri
,
C.
Quiñones-Garcia
,
D.
Khachariya
,
S.
Rathkanthiwar
,
P.
Reddy
,
R.
Kirste
,
S.
Mita
,
J.
Tweedie
,
R.
Collazo
, and
Z.
Sitar
, “
High electron mobility in AlN:Si by point and extended defect management
,”
J. Appl. Phys.
132
(
18
),
185703
(
2022
).
9.
C. G.
Van de Walle
and
J.
Neugebauer
, “
First-principles calculations for defects and impurities: Applications to III-nitrides
,”
J. Appl. Phys.
95
(
8
),
3851
3879
(
2004
).
10.
J. N.
Baker
,
P. C.
Bowes
,
J. S.
Harris
,
R.
Collazo
,
Z.
Sitar
, and
D. L.
Irving
, “
Complexes and compensation in degenerately donor doped GaN
,”
Appl. Phys. Lett.
117
(
10
),
102109
(
2020
).
11.
J. S.
Harris
,
J. N.
Baker
,
B. E.
Gaddy
,
I.
Bryan
,
Z.
Bryan
,
K. J.
Mirrielees
,
P.
Reddy
,
R.
Collazo
,
Z.
Sitar
, and
D. L.
Irving
, “
On compensation in Si-doped AlN
,”
Appl. Phys. Lett.
112
(
15
),
152101
(
2018
).
12.
R.
Zeisel
,
M. W.
Bayerl
,
S. T. B.
Goennenwein
,
R.
Dimitrov
,
O.
Ambacher
,
M. S.
Brandt
, and
M.
Stutzmann
, “
DX-behavior of Si in AlN
,”
Phys. Rev. B
61
(
24
),
R16283(R)
(
2000
).
13.
L.
Gordon
,
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Hybrid functional calculations of DX centers in AlN and GaN
,”
Phys. Rev. B
89
(
8
),
085204
(
2014
).
14.
P.
Bagheri
,
P.
Reddy
,
S.
Mita
,
D.
Szymanski
,
J. H.
Kim
,
Y.
Guan
,
D.
Khachariya
,
A.
Klump
,
S.
Pavlidis
,
R.
Kirste
,
R.
Collazo
, and
Z.
Sitar
, “
On the Ge shallow-to-deep level transition in Al-rich AlGaN
,”
J. Appl. Phys.
130
(
5
),
055702
(
2021
).
15.
P.
Reddy
,
S.
Washiyama
,
F.
Kaess
,
R.
Kirste
,
S.
Mita
,
R.
Collazo
, and
Z.
Sitar
, “
Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN
,”
J. Appl. Phys.
122
(
24
),
245702
(
2017
).
16.
P.
Reddy
,
M. P.
Hoffmann
,
F.
Kaess
,
Z.
Bryan
,
I.
Bryan
,
M.
Bobea
,
A.
Klump
,
J.
Tweedie
,
R.
Kirste
,
S.
Mita
,
M.
Gerhold
,
R.
Collazo
, and
Z.
Sitar
, “
Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control
,”
J. Appl. Phys.
120
(
18
),
185704
(
2016
).
17.
S.
Washiyama
,
P.
Reddy
,
B.
Sarkar
,
M. H.
Breckenridge
,
Q.
Guo
,
P.
Bagheri
,
A.
Klump
,
R.
Kirste
,
J.
Tweedie
,
S.
Mita
,
Z.
Sitar
, and
R.
Collazo
, “
The role of chemical potential in compensation control in Si:AlGaN
,”
J. Appl. Phys.
127
(
10
),
105702
(
2020
).
18.
M. H.
Breckenridge
,
P.
Bagheri
,
Q.
Guo
,
B.
Sarkar
,
D.
Khachariya
,
S.
Pavlidis
,
J.
Tweedie
,
R.
Kirste
,
S.
Mita
,
P.
Reddy
,
R.
Collazo
, and
Z.
Sitar
, “
High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN
,”
Appl. Phys. Lett.
118
(
11
),
112104
(
2021
).
19.
M.
Hayden Breckenridge
,
Q.
Guo
,
A.
Klump
,
B.
Sarkar
,
Y.
Guan
,
J.
Tweedie
,
R.
Kirste
,
S.
Mita
,
P.
Reddy
,
R.
Collazo
, and
Z.
Sitar
, “
Shallow Si donor in ion-implanted homoepitaxial AlN
,”
Appl. Phys. Lett.
116
(
17
),
172103
(
2020
).
20.
P.
Bagheri
,
J. H.
Kim
,
S.
Washiyama
,
P.
Reddy
,
A.
Klump
,
R.
Kirste
,
S.
Mita
,
R.
Collazo
, and
Z.
Sitar
, “
A pathway to highly conducting Ge-doped AlGaN
,”
J. Appl. Phys.
130
(
20
),
205703
(
2021
).
21.
S.
Washiyama
,
K. J.
Mirrielees
,
P.
Bagheri
,
J. N.
Baker
,
J.-H.
Kim
,
Q.
Guo
,
R.
Kirste
,
Y.
Guan
,
M. H.
Breckenridge
,
A. J.
Klump
,
P.
Reddy
,
S.
Mita
,
D. L.
Irving
,
R.
Collazo
, and
Z.
Sitar
, “
Self-compensation in heavily Ge doped AlGaN: A comparison to Si doping
,”
Appl. Phys. Lett.
118
(
4
),
042102
(
2021
).
22.
A.
Bansal
,
K.
Wang
,
J. S.
Lundh
,
S.
Choi
, and
J. M.
Redwing
, “
Effect of Ge doping on growth stress and conductivity in AlxGa1−xN
,”
Appl. Phys. Lett.
114
(
14
),
142101
(
2019
).
23.
R.
Kirste
,
M. P.
Hoffmann
,
E.
Sachet
,
M.
Bobea
,
Z.
Bryan
,
I.
Bryan
,
C.
Nenstiel
,
A.
Hoffmann
,
J.-P.
Maria
,
R.
Collazo
, and
Z.
Sitar
, “
Ge doped GaN with controllable high carrier concentration for plasmonic applications
,”
Appl. Phys. Lett.
103
(
24
),
242107
(
2013
).
24.
P.
Bagheri
,
R.
Kirste
,
P.
Reddy
,
S.
Washiyama
,
S.
Mita
,
B.
Sarkar
,
R.
Collazo
, and
Z.
Sitar
, “
The nature of the DX state in Ge-doped AlGaN
,”
Appl. Phys. Lett.
116
(
22
),
222102
(
2020
).
25.
A.
Rice
,
R.
Collazo
,
J.
Tweedie
,
R.
Dalmau
,
S.
Mita
,
J.
Xie
, and
Z.
Sitar
, “
Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
108
(
4
),
043510
(
2010
).
26.
R.
Dalmau
,
B.
Moody
,
R.
Schlesser
,
S.
Mita
,
J.
Xie
,
M.
Feneberg
,
B.
Neuschl
,
K.
Thonke
,
R.
Collazo
,
A.
Rice
,
J.
Tweedie
, and
Z.
Sitar
, “
Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates
,”
J. Electrochem. Soc.
158
(
5
),
H530
(
2011
).
27.
I.
Bryan
,
A.
Rice
,
L.
Hussey
,
Z.
Bryan
,
M.
Bobea
,
S.
Mita
,
J.
Xie
,
R.
Kirste
,
R.
Collazo
, and
Z.
Sitar
, “
Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition
,”
Appl. Phys. Lett.
102
(
6
),
061602
(
2013
).
28.
R. D.
Shannon
, “
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
,”
Acta Crystallogr. A
32
(
5
),
751
767
(
1976
).
29.
H.
Okumura
,
S.
Suihkonen
,
J.
Lemettinen
,
A.
Uedono
,
Y.
Zhang
,
D.
Piedra
, and
T.
Palacios
, “
AlN metal–semiconductor field-effect transistors using Si-ion implantation
,”
Jpn. J. Appl. Phys., Part 1
57
(
4S
),
04FR11
(
2018
).
30.
C.
Ventosa-Moulet
,
S.
Hayashi
, and
M. S.
Goorsky
, “
Lattice strain and strain evolution in hydrogen-implanted materials: The roles of mechanical properties and hydrogen diffusion
,”
ECS Trans.
33
(
4
),
249
254
(
2010
).
31.
U.
Dadwal
,
R.
Scholz
,
P.
Kumar
,
D.
Kanjilal
,
S.
Christiansen
,
U.
Gösele
, and
R.
Singh
, “
Hydrogen implantation-induced large area exfoliation in AlN epitaxial layers
,”
Phys. Status Solidi A
207
(
1
),
29
32
(
2010
).
32.
M. H.
Breckenridge
,
J.
Tweedie
,
P.
Reddy
,
Y.
Guan
,
P.
Bagheri
,
D.
Szymanski
,
S.
Mita
,
K.
Sierakowski
,
M.
Boćkowski
,
R.
Collazo
, and
Z.
Sitar
, “
High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing
,”
Appl. Phys. Lett.
118
(
2
),
022101
(
2021
).
33.
J.
Hyun Kim
,
P.
Bagheri
,
R.
Kirste
,
P.
Reddy
,
R.
Collazo
, and
Z.
Sitar
, “
Tracking of point defects in the full compositional range of AlGaN via photoluminescence spectroscopy
,”
Phys. Status Solidi A
2022
,
2200390
.
34.
Q.
Yan
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
, “
Origins of optical absorption and emission lines in AlN
,”
Appl. Phys. Lett.
105
(
11
),
111104
(
2014
).
35.
H.
Okumura
and
A.
Uedono
, “
Mg implantation in AlN layers on sapphire substrates
,”
Jpn. J. Appl. Phys., Part 1
62
(
2
),
020901
(
2023
).
You do not currently have access to this content.