Exciton–polaritons are unique quasiparticles with hybrid properties of an exciton and a photon, opening ways to realize ultrafast strongly nonlinear systems and inversion-free lasers based on Bose–Einstein polariton condensation. However, the real-world applications of polariton systems are still limited due to the temperature operation and costly fabrication techniques for both exciton materials and photon cavities. 2D perovskites represent one of the most prospective platforms for the realization of strong light-matter coupling since they support room-temperature exciton states with large oscillator strength and can simultaneously be used for fabrication of planar photon cavities with strong field localization due to the high refractive index of the material. In this work, we demonstrate the affordable mechanical scanning probe lithography method for research purposes and for the realization of room-temperature exciton–polariton systems based on 2D perovskite (PEA)2PbI4 with the Rabi splitting exceeding 200 meV. By the precise control of lithography parameters, we broadly adjust the exciton–polariton dispersion and, in particular, vary the radiative coupling of polaritonic modes to the free space. Our findings represent a versatile approach to fabrication of planar high-quality perovskite-based photonic cavities supporting the strong light-matter coupling regime for the development of on-chip all-optical active and nonlinear polaritonic devices.

1.
N.
Bélanger
,
A.
Villeneuve
, and
J.
Aitchison
, “
Solitonlike pulses in self-defocusing AlGaAs waveguides
,”
J. Opt. Soc. Am. B
14
,
3003
3012
(
1997
).
2.
A. V.
Kavokin
,
J. J.
Baumberg
,
G.
Malpuech
, and
F. P.
Laussy
,
Microcavities
(
Oxford University Press
,
2017
), Vol.
21
.
3.
C.
Weisbuch
,
M.
Nishioka
,
A.
Ishikawa
, and
Y.
Arakawa
, “
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity
,”
Phys. Rev. Lett.
69
,
3314
(
1992
).
4.
D.
Bajoni
,
P.
Senellart
,
E.
Wertz
,
I.
Sagnes
,
A.
Miard
,
A.
Lemaître
, and
J.
Bloch
, “
Polariton laser using single micropillar GaAs - GaAlAs semiconductor cavities
,”
Phys. Rev. Lett.
100
,
047401
(
2008
).
5.
J.
Kasprzak
,
M.
Richard
,
S.
Kundermann
,
A.
Baas
,
P.
Jeambrun
,
J. M. J.
Keeling
,
F.
Marchetti
,
M.
Szymańska
,
R.
André
,
J.
Staehli
et al, “
Bose–Einstein condensation of exciton polaritons
,”
Nature
443
,
409
414
(
2006
).
6.
L. K.
van Vugt
,
S.
Rühle
,
P.
Ravindran
,
H. C.
Gerritsen
,
L.
Kuipers
, and
D.
Vanmaekelbergh
, “
Exciton polaritons confined in a ZnO nanowire cavity
,”
Phys. Rev. Lett.
97
,
147401
(
2006
).
7.
F.
Semond
,
I.
Sellers
,
F.
Natali
,
D.
Byrne
,
M.
Leroux
,
J.
Massies
,
N.
Ollier
,
J.
Leymarie
,
P.
Disseix
, and
A.
Vasson
, “
Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon
,”
Appl. Phys. Lett.
87
,
021102
(
2005
).
8.
P.
Stepanov
,
A.
Vashisht
,
M.
Klaas
,
N.
Lundt
,
S.
Tongay
,
M.
Blei
,
S.
Höfling
,
T.
Volz
,
A.
Minguzzi
,
J.
Renard
et al, “
Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime
,”
Phys. Rev. Lett.
126
,
167401
(
2021
).
9.
V.
Kravtsov
,
E.
Khestanova
,
F. A.
Benimetskiy
,
T.
Ivanova
,
A. K.
Samusev
,
I. S.
Sinev
,
D.
Pidgayko
,
A. M.
Mozharov
,
I. S.
Mukhin
,
M. S.
Lozhkin
et al, “
Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum
,”
Light: Sci. Appl.
9
,
56
(
2020
).
10.
R.
Su
,
A.
Fieramosca
,
Q.
Zhang
,
H. S.
Nguyen
,
E.
Deleporte
,
Z.
Chen
,
D.
Sanvitto
,
T. C.
Liew
, and
Q.
Xiong
, “
Perovskite semiconductors for room-temperature exciton-polaritonics
,”
Nat. Mater.
20
,
1315
1324
(
2021
).
11.
M. C.
Gélvez-Rueda
,
M. B.
Fridriksson
,
R. K.
Dubey
,
W. F.
Jager
,
W.
van der Stam
, and
F. C.
Grozema
, “
Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores
,”
Nat. Commun.
11
,
1901
(
2020
).
12.
Y.-Q.
Zhao
,
Q.-R.
Ma
,
B.
Liu
,
Z.-L.
Yu
,
J.
Yang
, and
M.-Q.
Cai
, “
Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2 Pbi4
,”
Nanoscale
10
,
8677
8688
(
2018
).
13.
J.
Wang
,
R.
Su
,
J.
Xing
,
D.
Bao
,
C.
Diederichs
,
S.
Liu
,
T. C.
Liew
,
Z.
Chen
, and
Q.
Xiong
, “
Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite
,”
ACS Nano
12
,
8382
8389
(
2018
).
14.
R.
Butté
,
E.
Feltin
,
J.
Dorsaz
,
G.
Christmann
,
J.-F.
Carlin
,
N.
Grandjean
, and
M.
Ilegems
, “
Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities
,”
Jpn. J. Appl. Phys.
44
,
7207
(
2005
).
15.
R.
Su
,
S.
Ghosh
,
J.
Wang
,
S.
Liu
,
C.
Diederichs
,
T. C.
Liew
, and
Q.
Xiong
, “
Observation of exciton polariton condensation in a perovskite lattice at room temperature
,”
Nat. Phys.
16
,
301
306
(
2020
).
16.
J.
Wu
,
S.
Ghosh
,
R.
Su
,
A.
Fieramosca
,
T. C.
Liew
, and
Q.
Xiong
, “
Nonlinear parametric scattering of exciton polaritons in perovskite microcavities
,”
Nano Lett.
21
,
3120
3126
(
2021
).
17.
C.
Sturm
,
H.
Hilmer
,
R.
Schmidt-Grund
,
C.
Czekalla
,
J.
Sellmann
,
J.
Lenzner
,
M.
Lorenz
, and
M.
Grundmann
, “
Strong exciton-photon coupling in ZnO based resonators
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom.
27
,
1726
1730
(
2009
).
18.
C.
Whittaker
,
T.
Isoniemi
,
S.
Lovett
,
P.
Walker
,
S.
Kolodny
,
V.
Kozin
,
I.
Iorsh
,
I.
Farrer
,
D.
Ritchie
,
M.
Skolnick
et al, “
Exciton–polaritons in GaAs-based slab waveguide photonic crystals
,”
Appl. Phys. Lett.
119
,
181101
(
2021
).
19.
M. A.
Masharin
,
V. A.
Shahnazaryan
,
F. A.
Benimetskiy
,
D. N.
Krizhanovskii
,
I. A.
Shelykh
,
I. V.
Iorsh
,
S. V.
Makarov
, and
A. K.
Samusev
, “
Polaron-enhanced polariton nonlinearity in lead halide perovskites
,”
Nano Lett.
22
,
9092
9099
(
2022
).
20.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Asymmetric metasurfaces with high-q resonances governed by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
193903
(
2018
).
21.
V.
Ardizzone
,
F.
Riminucci
,
S.
Zanotti
,
A.
Gianfrate
,
M.
Efthymiou-Tsironi
,
D.
Suàrez-Forero
,
F.
Todisco
,
M.
De Giorgi
,
D.
Trypogeorgos
,
G.
Gigli
et al, “
Polariton Bose–Einstein condensate from a bound state in the continuum
,”
Nature
605
,
447
452
(
2022
).
22.
M. S.
Alias
,
I.
Dursun
,
D.
Shi
,
M. I.
Saidaminov
,
E. M.
Diallo
,
D.
Priante
,
T. K.
Ng
,
O. M.
Bakr
, and
B. S.
Ooi
, “
Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications
,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
33
,
051207
(
2015
).
23.
N.
Lamers
,
Z.
Zhang
, and
J.
Wallentin
, “
Perovskite-compatible electron-beam-lithography process based on nonpolar solvents for single-nanowire devices
,”
ACS Appl. Nano Mater.
5
,
3177
3182
(
2022
).
24.
A. Y.
Zhizhchenko
,
A. B.
Cherepakhin
,
M. A.
Masharin
,
A. P.
Pushkarev
,
S. A.
Kulinich
,
A. A.
Kuchmizhak
, and
S. V.
Makarov
, “
Directional lasing from nanopatterned halide perovskite nanowire
,”
Nano Lett.
21
,
10019
10025
(
2021
).
25.
M. A.
Masharin
,
V. A.
Shahnazaryan
,
I. V.
Iorsh
,
S. V.
Makarov
,
A. K.
Samusev
, and
I. A.
Shelykh
, “
Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites
,”
ACS Photonics
10
,
691
698
(
2023
).
26.
R.
Garcia
,
A. W.
Knoll
, and
E.
Riedo
, “
Advanced scanning probe lithography
,”
Nat. Nanotechnol.
9
,
577
587
(
2014
).
27.
N. J.
Jeon
,
J. H.
Noh
,
Y. C.
Kim
,
W. S.
Yang
,
S.
Ryu
, and
S. I.
Seok
, “
Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
,”
Nat. Mater.
13
,
897
903
(
2014
).
28.
J.
Hopfield
, “
Theory of the contribution of excitons to the complex dielectric constant of crystals
,”
Phys. Rev.
112
,
1555
(
1958
).
29.
L.
Li
, “
New formulation of the Fourier modal method for crossed surface-relief gratings
,”
J. Opt. Soc. Am. A
14
,
2758
2767
(
1997
).
30.
C.
Schneider
,
M. M.
Glazov
,
T.
Korn
,
S.
Höfling
, and
B.
Urbaszek
, “
Two-dimensional semiconductors in the regime of strong light-matter coupling
,”
Nat. Commun.
9
,
2695
(
2018
).
31.
D.
Gerace
and
L. C.
Andreani
, “
Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs
,”
Phys. Rev. E
69
,
056603
(
2004
).
32.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
33.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
(
1961
).
34.
S.
Fan
,
W.
Suh
, and
J. D.
Joannopoulos
, “
Temporal coupled-mode theory for the Fano resonance in optical resonators
,”
J. Opt. Soc. Am. A
20
,
569
572
(
2003
).
35.
S.
Gambino
,
M.
Mazzeo
,
A.
Genco
,
O.
Di Stefano
,
S.
Savasta
,
S.
Patane
,
D.
Ballarini
,
F.
Mangione
,
G.
Lerario
,
D.
Sanvitto
et al, “
Exploring light–matter interaction phenomena under ultrastrong coupling regime
,”
ACS Photonics
1
,
1042
1048
(
2014
).
36.
M. A.
Masharin
,
A. K.
Samusev
,
A. A.
Bogdanov
,
I. V.
Iorsh
,
H. V.
Demir
, and
S. V.
Makarov
, “
Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface
,”
Adv. Funct. Mater.
2023
,
2215007
.
37.
S.
Makarov
,
A.
Furasova
,
E.
Tiguntseva
,
A.
Hemmetter
,
A.
Berestennikov
,
A.
Pushkarev
,
A.
Zakhidov
, and
Y.
Kivshar
, “
Halide-perovskite resonant nanophotonics
,”
Adv. Opt. Mater.
7
,
1800784
(
2019
).

Supplementary Material

You do not currently have access to this content.