The fundamental quantum limit, or the quantum Cramér-Rao bound, defines the sensitivity limit for quantum measurements. For linear measurement systems, such as gravitational-wave detectors, it is inversely proportional to the noise spectrum of the dynamical variable that couples to the measured signal. Defining a physically meaningful spectrum, however, requires that the system is stable and a steady state exists. We relax such a stability requirement and prove that the fundamental quantum limit can be derived simply by considering the open-loop dynamics in the Fourier domain.
References
1.
R. X.
Adhikari
, “Gravitational radiation detection with laser interferometry
,” Rev. Mod. Phys.
86
, 121
–151
(2013
).2.
B. P.
Abbott
, R.
Abbott
, T. D.
Abbott
et al, “Observation of gravitational waves from a binary black hole merger
,” Phys. Rev. Lett.
116
, 061102
(2016
).3.
B. P.
Abbott
, R.
Abbott
, T. D.
Abbott
et al, “GW170817: Observation of gravitational waves from a binary neutron star inspiral
,” Phys. Rev. Lett.
119
, 161101
(2017
).4.
R.
Abbott
, T. D.
Abbott
, F.
Acernese
et al, “GWTC-3: Compact binary coalescences observed by ligo and virgo during the second part of the third observing run
,” arXiv:2111.03606 (2021
).5.
V. B.
Braginsky
and F. Y.
Khalilli
, Quantum Measurement
(Cambridge University Press
, 1992
).6.
7.
A. A.
Clerk
, M. H.
Devoret
, S. M.
Girvin
, F.
Marquardt
, and R. J.
Schoelkopf
, “Introduction to quantum noise, measurement and amplification
,” Rev. Mod. Phys.
82
, 1155
(2010
).8.
C.
Helstrom
, “Minimum mean-squared error of estimates in quantum statistics
,” Phys. Lett. A
25
, 101
(1967
).9.
A.
Holevo
, Probabilistic and Statistical Aspects of Quantum Theory
, 2nd ed. (Scuola Normale Superiore
, 2011
).10.
V. B.
Braginsky
, M. L.
Gorodetsky
, F. Y.
Khalili
, and K. S.
Thorne
, “Energetic quantum limit in large-scale interferometers
,” AIP Conf. Proc.
523
, 180
(2000
).11.
M.
Tsang
, H. M.
Wiseman
, and C. M.
Caves
, “Fundamental quantum limit to waveform estimation
,” Phys. Rev. Lett.
106
, 090401
(2011
).12.
H.
Miao
, R. X.
Adhikari
, Y.
Ma
, B.
Pang
, and Y.
Chen
, “Towards the fundamental quantum limit of linear measurements of classical signals
,” Phys. Rev. Lett.
119
, 050801
(2017
).13.
A.
Buonanno
and Y.
Chen
, “Signal recycled laser-interferometer gravitational-wave detectors as optical springs
,” Phys. Rev. D
65
, 042001
(2002
).14.
M.
Evans
, S.
Gras
, P.
Fritschel
, J.
Miller
, L.
Barsotti
, D.
Martynov
, A.
Brooks
, D.
Coyne
, R.
Abbott
, R. X.
Adhikari
, K.
Arai
, R.
Bork
, B.
Kells
, J.
Rollins
, N.
Smith-Lefebvre
, G.
Vajente
, H.
Yamamoto
, C.
Adams
, S.
Aston
, J.
Betzweiser
, V.
Frolov
, A.
Mullavey
, A.
Pele
, J.
Romie
, M.
Thomas
, K.
Thorne
, S.
Dwyer
, K.
Izumi
, K.
Kawabe
, D.
Sigg
, R.
Derosa
, A.
Effler
, K.
Kokeyama
, S.
Ballmer
, T. J.
Massinger
, A.
Staley
, M.
Heinze
, C.
Mueller
, H.
Grote
, R.
Ward
, E.
King
, D.
Blair
, L.
Ju
, and C.
Zhao
, “Observation of parametric instability in advanced ligo
,” Phys. Rev. Lett.
114
, 161102
(2015
).15.
A.
Wicht
, K.
Danzmann
, M.
Fleischhauer
, M.
Scully
, G.
Müller
, and R.
Rinkleff
, “White-light cavities, atomic phase coherence, and gravitational wave detectors
,” Opt. Commun.
134
, 431
(1997
).16.
S. L.
Danilishin
and F. Y.
Khalili
, “Quantum measurement theory in gravitational-wave detectors
,” Living Rev. Relat.
15
, 5
(2012
).17.
M.
Zhou
, Z.
Zhou
, and S. M.
Shahriar
, “Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors
,” Phys. Rev. D
92
, 082002
(2015
).18.
H.
Miao
, Y.
Ma
, C.
Zhao
, and Y.
Chen
, “Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters
,” Phys. Rev. Lett.
115
, 211104
(2015
).19.
S. L.
Danilishin
, F. Y.
Khalili
, and H.
Miao
, “Advanced quantum techniques for future gravitational-wave detectors
,” Living Rev. Relat.
22
, 2
(2019
).20.
X.
Li
, M.
Goryachev
, Y.
Ma
, M. E.
Tobar
, C.
Zhao
, R. X.
Adhikari
, and Y.
Chen
, “Broadband sensitivity improvement via coherent quantum feedback with PT symmetry
,” arXiv:2012.00836 (2020
).21.
X.
Li
, J.
Smetana
, A. S.
Ubhi
, J.
Bentley
, Y.
Chen
, Y.
Ma
, H.
Miao
, and D.
Martynov
, “Enhancing interferometer sensitivity without sacrificing bandwidth and stability: Beyond single-mode and resolved-sideband approximation
,” Phys. Rev. D
103
, 122001
(2021
).22.
M. A.
Page
, M.
Goryachev
, H.
Miao
, Y.
Chen
, Y.
Ma
, D.
Mason
, M.
Rossi
, C. D.
Blair
, L.
Ju
, D. G.
Blair
, A.
Schliesser
, M. E.
Tobar
, and C.
Zhao
, “Gravitational wave detectors with broadband high frequency sensitivity
,” Commun. Phys.
4
, 27
(2021
).23.
A.
Dmitriev
, H.
Miao
, and D.
Martynov
, “Enhancing the sensitivity of interferometers with stable phase-insensitive quantum filters
,” Phys. Rev. D
106
, 022007
(2022
).24.
J. W.
Gardner
, M. J.
Yap
, V.
Adya
, S.
Chua
, B. J.
Slagmolen
, and D. E.
McClelland
, “Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection
,” Phys. Rev. D
106
, L041101
(2022
).25.
C. W.
Gardiner
and M. J.
Collett
, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation
,” Phys. Rev. A
31
, 3761
–3774
(1985
).26.
R.
Kubo
, “The fluctuation-dissipation theorem
,” Rep. Prog. Phys.
29
, 255
(1966
).27.
H.
Miao
, “General quantum constraints on detector noise in continuous linear measurements
,” Phys. Rev. A
95
, 012103
(2017
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.