The fundamental quantum limit, or the quantum Cramér-Rao bound, defines the sensitivity limit for quantum measurements. For linear measurement systems, such as gravitational-wave detectors, it is inversely proportional to the noise spectrum of the dynamical variable that couples to the measured signal. Defining a physically meaningful spectrum, however, requires that the system is stable and a steady state exists. We relax such a stability requirement and prove that the fundamental quantum limit can be derived simply by considering the open-loop dynamics in the Fourier domain.

1.
R. X.
Adhikari
, “
Gravitational radiation detection with laser interferometry
,”
Rev. Mod. Phys.
86
,
121
151
(
2013
).
2.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
 et al, “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
3.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
 et al, “
GW170817: Observation of gravitational waves from a binary neutron star inspiral
,”
Phys. Rev. Lett.
119
,
161101
(
2017
).
4.
R.
Abbott
,
T. D.
Abbott
,
F.
Acernese
 et al, “
GWTC-3: Compact binary coalescences observed by ligo and virgo during the second part of the third observing run
,” arXiv:2111.03606 (
2021
).
5.
V. B.
Braginsky
and
F. Y.
Khalilli
,
Quantum Measurement
(
Cambridge University Press
,
1992
).
6.
D. V.
Averin
, “
Linear quantum measurements
,” arXiv:cond-mat/0301524v1 (
2003
).
7.
A. A.
Clerk
,
M. H.
Devoret
,
S. M.
Girvin
,
F.
Marquardt
, and
R. J.
Schoelkopf
, “
Introduction to quantum noise, measurement and amplification
,”
Rev. Mod. Phys.
82
,
1155
(
2010
).
8.
C.
Helstrom
, “
Minimum mean-squared error of estimates in quantum statistics
,”
Phys. Lett. A
25
,
101
(
1967
).
9.
A.
Holevo
,
Probabilistic and Statistical Aspects of Quantum Theory
, 2nd ed. (
Scuola Normale Superiore
,
2011
).
10.
V. B.
Braginsky
,
M. L.
Gorodetsky
,
F. Y.
Khalili
, and
K. S.
Thorne
, “
Energetic quantum limit in large-scale interferometers
,”
AIP Conf. Proc.
523
,
180
(
2000
).
11.
M.
Tsang
,
H. M.
Wiseman
, and
C. M.
Caves
, “
Fundamental quantum limit to waveform estimation
,”
Phys. Rev. Lett.
106
,
090401
(
2011
).
12.
H.
Miao
,
R. X.
Adhikari
,
Y.
Ma
,
B.
Pang
, and
Y.
Chen
, “
Towards the fundamental quantum limit of linear measurements of classical signals
,”
Phys. Rev. Lett.
119
,
050801
(
2017
).
13.
A.
Buonanno
and
Y.
Chen
, “
Signal recycled laser-interferometer gravitational-wave detectors as optical springs
,”
Phys. Rev. D
65
,
042001
(
2002
).
14.
M.
Evans
,
S.
Gras
,
P.
Fritschel
,
J.
Miller
,
L.
Barsotti
,
D.
Martynov
,
A.
Brooks
,
D.
Coyne
,
R.
Abbott
,
R. X.
Adhikari
,
K.
Arai
,
R.
Bork
,
B.
Kells
,
J.
Rollins
,
N.
Smith-Lefebvre
,
G.
Vajente
,
H.
Yamamoto
,
C.
Adams
,
S.
Aston
,
J.
Betzweiser
,
V.
Frolov
,
A.
Mullavey
,
A.
Pele
,
J.
Romie
,
M.
Thomas
,
K.
Thorne
,
S.
Dwyer
,
K.
Izumi
,
K.
Kawabe
,
D.
Sigg
,
R.
Derosa
,
A.
Effler
,
K.
Kokeyama
,
S.
Ballmer
,
T. J.
Massinger
,
A.
Staley
,
M.
Heinze
,
C.
Mueller
,
H.
Grote
,
R.
Ward
,
E.
King
,
D.
Blair
,
L.
Ju
, and
C.
Zhao
, “
Observation of parametric instability in advanced ligo
,”
Phys. Rev. Lett.
114
,
161102
(
2015
).
15.
A.
Wicht
,
K.
Danzmann
,
M.
Fleischhauer
,
M.
Scully
,
G.
Müller
, and
R.
Rinkleff
, “
White-light cavities, atomic phase coherence, and gravitational wave detectors
,”
Opt. Commun.
134
,
431
(
1997
).
16.
S. L.
Danilishin
and
F. Y.
Khalili
, “
Quantum measurement theory in gravitational-wave detectors
,”
Living Rev. Relat.
15
,
5
(
2012
).
17.
M.
Zhou
,
Z.
Zhou
, and
S. M.
Shahriar
, “
Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors
,”
Phys. Rev. D
92
,
082002
(
2015
).
18.
H.
Miao
,
Y.
Ma
,
C.
Zhao
, and
Y.
Chen
, “
Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters
,”
Phys. Rev. Lett.
115
,
211104
(
2015
).
19.
S. L.
Danilishin
,
F. Y.
Khalili
, and
H.
Miao
, “
Advanced quantum techniques for future gravitational-wave detectors
,”
Living Rev. Relat.
22
,
2
(
2019
).
20.
X.
Li
,
M.
Goryachev
,
Y.
Ma
,
M. E.
Tobar
,
C.
Zhao
,
R. X.
Adhikari
, and
Y.
Chen
, “
Broadband sensitivity improvement via coherent quantum feedback with PT symmetry
,” arXiv:2012.00836 (
2020
).
21.
X.
Li
,
J.
Smetana
,
A. S.
Ubhi
,
J.
Bentley
,
Y.
Chen
,
Y.
Ma
,
H.
Miao
, and
D.
Martynov
, “
Enhancing interferometer sensitivity without sacrificing bandwidth and stability: Beyond single-mode and resolved-sideband approximation
,”
Phys. Rev. D
103
,
122001
(
2021
).
22.
M. A.
Page
,
M.
Goryachev
,
H.
Miao
,
Y.
Chen
,
Y.
Ma
,
D.
Mason
,
M.
Rossi
,
C. D.
Blair
,
L.
Ju
,
D. G.
Blair
,
A.
Schliesser
,
M. E.
Tobar
, and
C.
Zhao
, “
Gravitational wave detectors with broadband high frequency sensitivity
,”
Commun. Phys.
4
,
27
(
2021
).
23.
A.
Dmitriev
,
H.
Miao
, and
D.
Martynov
, “
Enhancing the sensitivity of interferometers with stable phase-insensitive quantum filters
,”
Phys. Rev. D
106
,
022007
(
2022
).
24.
J. W.
Gardner
,
M. J.
Yap
,
V.
Adya
,
S.
Chua
,
B. J.
Slagmolen
, and
D. E.
McClelland
, “
Nondegenerate internal squeezing: An all-optical, loss-resistant quantum technique for gravitational-wave detection
,”
Phys. Rev. D
106
,
L041101
(
2022
).
25.
C. W.
Gardiner
and
M. J.
Collett
, “
Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation
,”
Phys. Rev. A
31
,
3761
3774
(
1985
).
26.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
(
1966
).
27.
H.
Miao
, “
General quantum constraints on detector noise in continuous linear measurements
,”
Phys. Rev. A
95
,
012103
(
2017
).
You do not currently have access to this content.