Single-shot reconstruction of the inline hologram is highly desirable as a cost-effective and portable imaging modality in resource-constrained environments. However, the twin image artifacts, caused by the propagation of the conjugated wavefront with missing phase information, contaminate the reconstruction. Existing end-to-end deep learning-based methods require massive training data pairs with environmental and system stability, which is very difficult to achieve. Recently proposed deep image prior (DIP) integrates the physical model of hologram formation into deep neural networks without any prior training requirement. However, the process of fitting the model output to a single measured hologram results in the fitting of interference-related noise. To overcome this problem, we have implemented an untrained deep neural network powered with explicit regularization by denoising (RED), which removes twin images and noise in reconstruction. Our work demonstrates the use of alternating directions of multipliers method (ADMM) to combine DIP and RED into a robust single-shot phase recovery process. The use of ADMM, which is based on the variable splitting approach, made it possible to plug and play different denoisers without the need of explicit differentiation. Experimental results show that the sparsity-promoting denoisers give better results over DIP in terms of phase signal-to-noise ratio (SNR). Considering the computational complexities, we conclude that the total variation denoiser is more appropriate for hologram reconstruction.

1.
A.
Ghosh
,
J.
Noble
,
A.
Sebastian
,
S.
Das
, and
Z.
Liu
, “
Digital holography for non-invasive quantitative imaging of two-dimensional materials
,”
J. Appl. Phys.
495
(
127
),
084901
(
2020
).
2.
H. P.
Gurram
,
P.
Panta
,
V. P.
Pandiyan
,
I.
Ghori
, and
R.
John
, “
Digital holographic microscopy for quantitative and label-free oral cytology evaluation
,”
Opt. Eng.
59
(
2
),
024105
(
2020
).
3.
D.
Gabor
, “
A new microscopic principle
,”
Nature
161
,
777
778
(
1948
).
4.
C.
Wen
,
C.
Quan
, and
C. J.
Tay
, “
Extended depth of focus in a particle field measurement using a single-shot digital hologram
,”
Appl. Phys. Lett.
95
(
20
),
201103
(
2009
).
5.
H. P. R.
Gurram
,
A. S.
Galande
, and
R.
John
, “
Nanometric depth phase imaging using low-cost on-chip lensless inline holographic microscopy
,”
Opt. Eng.
59
(
10
),
104105
(
2020
).
6.
O.
Mudanyali
,
D.
Tseng
,
C.
Oh
,
S. O.
Isikman
,
I.
Sencan
,
W.
Bishara
,
C.
Oztoprak
,
S.
Seo
,
B.
Khademhosseini
, and
A.
Ozcan
, “
Compact, lightweight and cost-effective microscope based on lensless incoherent holography for tele medicine applications
,”
Lab Chip
10
,
1417
1428
(
2010
).
7.
T.
Latychevskaia
and
H. W.
Fink
, “
Practical algorithms for simulation and reconstruction of digital in-line holograms
,”
Appl. Opt.
54
(
9
),
2424
2434
(
2015
).
8.
R.
Gerchberg
and
W.
Saxton
, “
A practical algorithm for the determination of phase from image and diffraction plane pictures
,”
Optik
35
,
237
246
(
1972
).
9.
J. R.
Fienup
, “
Phase retrieval algorithms: A comparison
,”
Appl. Opt.
21
,
2758
2769
(
1982
).
10.
T.
Latychevskaia
, “
Iterative phase retrieval for digital holography: Tutorial
,”
J. Opt. Soc. Am. A
36
(
12
),
D31
D40
(
2019
).
11.
T.
Latychevskaia
and
H. W.
Fink
, “
Solution to the twin image problem in holography
,”
Phys. Rev. Lett.
98
,
233901
(
2007
).
12.
L.
Denis
,
D.
Lorenz
,
E.
Thiébaut
,
C.
Fournier
, and
D.
Trede
, “
Inline hologram reconstruction with sparsity constraints
,”
Opt. Lett.
34
(
22
),
3475
3477
(
2009
).
13.
L. I.
Rudinet
,
S.
Osher
, and
E.
Fatemi
, “
Nonlinear total variation-based noise removal algorithms
,”
Physica D
60
(
1–4
),
259
268
(
1992
).
14.
W.
Luo
,
Y.
Zhang
,
Z.
Göröcs
,
A.
Feizi
, and
A.
Ozcan
, “
Propagation phasor approach for holographic image reconstruction
,”
Sci. Rep.
6
,
22738
(
2016
).
15.
H.
Zhang
,
T.
Stangner
,
K.
Wiklund
, and
M.
Andersson
, “
Object plane detection and phase retrieval from single-shot holograms using multi-wavelength in-line holography
,”
Appl. Opt.
57
(
33
),
9855
9862
(
2018
).
16.
L. J.
Allen
and
M. P.
Oxley
, “
Phase retrieval from series of images obtained by defocus variation
,”
Opt. Commun.
199
,
65
75
(
2001
).
17.
A.
Greenbaum
and
A.
Ozcan
, “
Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy
,”
Opt. Express
20
,
3129
3143
(
2012
).
18.
W.
Zhang
,
L.
Cao
,
D. J.
Brady
,
H.
Zhang
,
J.
Cang
,
H.
Zhang
, and
G.
Jin
, “
Twin-image-free holography: A compressive sensing approach
,”
Phys. Rev. Lett.
121
,
093902
(
2018
).
19.
C.
Fournier
,
L.
Denis
,
E.
Thiebaut
,
T.
Fournel
, and
M.
Seifi
, “
Inverse problem approaches for digital hologram reconstruction
,”
Proc. SPIE
8043
,
80430S
(
2011
).
20.
R.
Yair
,
Y.
Zhang
,
H.
Günaydın
,
D.
Teng
, and
A.
Ozcan
, “
Phase recovery and holographic image reconstruction using deep learning in neural networks
,”
Light: Sci. Appl.
7
(
2
),
17141
(
2018
).
21.
Y.
Shuai
,
H.
Cui
,
Y.
Long
, and
J.
Wu
, “
Digital inline holographic reconstruction with learned sparsifying transform
,”
Opt. Commun.
498
,
127220
(
2021
).
22.
Z.
Kai
,
W.
Zuo
,
S.
Gu
, and
L.
Zhang
, “
Learning deep CNN denoiser prior for image restoration
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2017
), pp.
3929
3938
.
23.
M.
Fabien
,
L.
Denis
,
T.
Olivier
, and
C.
Fournier
, “
From Fienup's phase retrieval techniques to regularized inversion for in-line holography: Tutorial
,”
J. Opt. Soc. Am. A
36
(
12
),
D62
80
(
2019
).
24.
A. S.
Galande
,
H. P.
Gurram
,
A. P.
Kamireddy
,
V. S.
Venkatapuram
,
Q.
Hasan
, and
R.
John
, “
Quantitative phase imaging of biological cells using lensless inline holographic microscopy through sparsity-assisted iterative phase retrieval algorithm
,”
J. Appl. Phys.
132
(
14
),
243102
(
2022
).
25.
Q.
Adnan
,
I.
Ilahi
,
F.
Shamshad
,
F.
Boussaid
,
M.
Bennamoun
, and
J.
Qadir
, “
Untrained neural network priors for inverse imaging problems: A survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
2022
,
1
20
.
26.
O.
Gregory
,
A.
Jalal
,
C. A.
Metzler
,
R. G.
Baraniuk
,
A. G.
Dimakis
, and
R.
Willett
, “
Deep learning techniques for inverse problems in imaging
,”
IEEE J. Sel. Areas Inf. Theory
1
,
39
56
(
2020
).
27.
Z.
Tianjiao
,
Y.
Zhu
, and
E. Y.
Lam
, “
Deep learning for digital holography: A review
,”
Opt. Express
29
(
24
),
40572
40593
(
2021
).
28.
U.
Dmitry
,
A.
Vedaldi
, and
V.
Lempitsky
, “
Deep image prior
,” in
Proceedings of the IEEE CVPR
(
IEEE
,
2018
), pp.
9446
9454
.
29.
L.
Huayu
,
X.
Chen
,
H.
Wu
,
Z.
Chi
,
C.
Mann
, and
A.
Razi
, “
Deep DIH: Statistically inferred reconstruction of digital in-line holography by deep learning
,”
IEEE Access
8
,
202648
202659
(
2020
).
30.
W.
Fei
,
Y.
Bian
,
H.
Wang
,
M.
Lyu
,
G.
Pedrini
,
W.
Osten
,
G.
Barbastathis
, and
G.
Situ
, “
Phase imaging with an untrained neural network
,”
Light: Sci. Appl.
9
(
1
),
77
(
2020
).
31.
S.
Kumar
, “
Phase retrieval with physics informed zero-shot network
,”
Opt. Lett.
46
,
5942
5945
(
2021
).
32.
Y.
Yao
,
H.
Chan
,
S.
Sankaranarayanan
,
P.
Balaprakash
,
R. J.
Harder
, and
M. J.
Cherukara
, “
AutoPhaseNN: Unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging
,”
npj Comput. Mater.
8
(
1
),
124
(
2022
).
33.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
34.
M.
Gary
,
P.
Milanfar
, and
M.
Elad
, “
Deepred: Deep image prior powered by red
,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
,
2019
.
35.
P.
Cascarano
,
A.
Sebastiani
,
M. C.
Comes
,
G.
Franchini
, and
F.
Porta
, “
Combining weighted total variation and deep image prior for natural and medical image restoration via ADMM
,” in
21st International Conference on Computational Science and Its Applications (ICCSA)
(
IEEE
,
2021
), pp.
39
46
.
36.
R.
Yaniv
,
M.
Elad
, and
P.
Milanfar
, “
The little engine that could: Regularization by denoising (RED)
,”
SIAM J. Imaging Sci.
10
(
4
),
1804
1844
(
2017
).
37.
B.
Stephen
,
N.
Parikh
, and
E.
Chu
,
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
(
Now Publishers, Inc.
,
2011
).
38.
W.
Zaiwen
,
C.
Yang
,
X.
Liu
, and
S.
Marchesini
, “
Alternating direction methods for classical and ptychographic phase retrieval
,”
Inverse Probl.
28
(
11
),
115010
(
2012
).

Supplementary Material

You do not currently have access to this content.