Polymer dielectrics for electrostatic capacitors possess well-recognized advantages, including ultrahigh power density, excellent processability, and unique self-healing capability. Nevertheless, the negative coupling relationship between dielectric permittivity and breakdown strength in dielectrics always constrains the enhancement of energy density, which cannot satisfy the ever-increasing requirements for integrated and miniaturized technologies. Here, a kind of C/SiO2@TiO2 triphase nanoparticle (CST NP) with a hybrid-core satellite structure is prepared and introduced into nonlinear poly(vinylidene fluoride-co-hexafluoropylene) [P(VDF-HFP)] matrix to improve permittivity and polarization. Benefited from the intensified interfacial polarization induced by CST NPs, a high permittivity of ∼18.8, which is approximately 219% that of pure P(VDF-HFP) (∼8.6), is obtained at 10 kHz. Meanwhile, a linear PEI film with high breakdown strength is stacked with the CST/P(VDF-HFP) composites, forming linear/nonlinear CST/P(VDF-HFP)-PEI bilayer composites. Eventually, a high breakdown strength of ∼503.9 kV/mm, a high energy density of ∼4.26 J/cm3, and a high efficiency of ∼91% are simultaneously achieved in the bilayer composite with merely 0.75 wt. % nanoparticles. The linear/nonlinear bilayer structure incorporated with hybrid-core satellite nanofillers offers an effective strategy to design high-performance dielectric energy storage materials.

1.
M.
Feng
,
Y.
Feng
,
T.
Zhang
,
J.
Li
,
Q.
Chi
, and
Q.
Lei
,
Adv. Sci.
8
,
2102221
(
2021
).
2.
X.
Zhang
,
N.
Zhao
, and
C.
He
,
Prog. Mater. Sci.
113
,
100672
(
2020
).
3.
Q.-K.
Feng
,
J.-Y.
Pei
,
Q.
Dong
,
S.-L.
Zhong
,
W.-W.
Lu
,
D.-L.
Zhang
,
C.
Liu
, and
Z.-M.
Dang
,
Appl. Phys. Lett.
118
,
262901
(
2021
).
4.
B.
Wan
,
X.
Yang
,
X.
Dong
,
M.-S.
Zheng
,
Q.
Zhao
,
H.
Zhang
,
G.
Chen
, and
J.-W.
Zha
,
Adv. Mater.
35
,
2207451
(
2023
).
5.
X.
Wu
,
X.
Chen
,
Q. M.
Zhang
, and
D. Q.
Tan
,
Energy Storage Mater.
44
,
29
(
2022
).
6.
Y.
Li
,
G.
Sun
,
Y.
Zhou
,
G.
Liu
,
J.
Wang
, and
S.
Han
,
Prog. Org. Coat.
172
,
107103
(
2022
).
7.
X.
Li
,
Z.
Shi
,
M.
Han
,
Q.
Tang
,
P.
Xie
, and
R.
Fan
,
Mater. Today Energy
29
,
101119
(
2022
).
8.
G.
Wang
,
Z.
Lu
,
Y.
Li
,
L.
Li
,
H.
Ji
,
A.
Feteira
,
D.
Zhou
,
D.
Wang
,
S.
Zhang
, and
I. M.
Reaney
,
Chem. Rev.
121
,
6124
(
2021
).
9.
Y.
Wang
,
Y.
Wang
,
H.
Zeng
, and
X.
Wei
,
Appl. Phys. Lett.
120
,
023904
(
2022
).
10.
W.
Zhu
,
W.
Zhao
,
J.
Kang
,
P.
Zhang
,
Y.
Li
,
Q.
Chen
,
Z.
Yao
,
Z.
Pan
,
Y.
Zhao
,
J.
Hong
, and
X.
Wang
,
Appl. Phys. Lett.
120
,
223904
(
2022
).
11.
L.
Liang
,
Z.
Shi
,
X.
Tan
,
S.
Sun
,
M.
Chen
,
D.
Dastan
,
B.
Dong
, and
L.
Cao
,
Adv. Mater. Interfaces
9
,
2101646
(
2022
).
12.
L.
Sun
,
Z.
Shi
,
B.
He
,
H.
Wang
,
S.
Liu
,
M.
Huang
,
J.
Shi
,
D.
Dastan
, and
H.
Wang
,
Adv. Funct. Mater.
31
,
2100280
(
2021
).
13.
Q.
Chi
,
Z.
Gao
,
C.
Zhang
,
T.
Zhang
,
Y.
Cui
,
X.
Wang
, and
Q.
Lei
,
J. Mater. Sci. Mater. Electron.
30
,
1
(
2019
).
14.
Q.-K.
Feng
,
Q.
Dong
,
D.-L.
Zhang
,
J.-Y.
Pei
, and
Z.-M.
Dang
,
Compos. Sci. Technol.
218
,
109193
(
2022
).
15.
Y.
Niu
,
J.
Dong
,
Y.
He
,
X.
Xu
,
S.
Li
,
K.
Wu
,
Q.
Wang
, and
H.
Wang
,
Nano Energy
97
,
107215
(
2022
).
16.
M.
Han
,
Z.
Shi
,
W.
Zhang
,
K.
Zhang
,
H.
Wang
,
D.
Dastan
, and
R.
Fan
,
Composites, Part A
149
,
106559
(
2021
).
17.
L.
Sun
,
Z.
Shi
,
L.
Liang
,
J.
Dong
,
Z.
Pan
,
H.
Wang
,
Z.
Gao
,
Y.
Qin
,
R.
Fan
, and
H.
Wang
,
ACS Appl. Mater. Interfaces
14
,
29292
(
2022
).
18.
J.
Zeng
,
J.
Yan
,
B.-W.
Li
, and
X.
Zhang
,
Ceram. Int.
48
,
20526
(
2022
).
19.
W.
Miao
,
H.
Chen
,
Z.
Pan
,
X.
Pei
,
L.
Li
,
P.
Li
,
J.
Liu
,
J.
Zhai
, and
H.
Pan
,
Compos. Sci. Technol.
201
,
108501
(
2021
).
20.
N. L.
Meereboer
,
I.
Terzić
,
G.
Portale
, and
K.
Loos
,
Nano Energy
64
,
103939
(
2019
).
21.
L.
Sun
,
Z.
Shi
,
L.
Liang
,
S.
Wei
,
H.
Wang
,
D.
Dastan
,
K.
Sun
, and
R.
Fan
,
J. Mater. Chem.
C 8
,
10257
(
2020
).
22.
L.
Cheng
,
K.
Liu
,
M.
Wang
,
P.
Fan
,
C.
Zhou
,
A. N.
Vtyurin
,
H.
Deng
,
L.
Zhang
,
H.
Zhang
,
Y.
Hu
,
B.
Nan
, and
Y.
Liu
,
Nanotechnology
32
,
425702
(
2021
).
23.
N.
Xu
,
L.
Hu
,
Q.
Zhang
,
X.
Xiao
,
H.
Yang
, and
E.
Yu
,
ACS Appl. Mater. Interfaces
49
,
27373
(
2015
).
24.
Q.
Chi
,
B.
Wang
,
T.
Zhang
,
C.
Zhang
,
Y.
Zhang
,
X.
Wang
, and
Q.
Lei
,
J. Mater. Sci. Mater. Electron.
30
,
19956
(
2019
).
25.
H.
Bai
,
K.
Zhu
,
Z.
Wang
,
B.
Shen
, and
J.
Zhai
,
Adv. Funct. Mater.
31
,
2102646
(
2021
).
26.
X.-J.
Liu
,
M.-S.
Zheng
,
Q.
Wang
,
G.
Chen
, and
J.-W.
Zha
,
Appl. Phys. Lett.
121
,
243902
(
2022
).
27.
X.
Zhou
,
J.
Yang
,
Z.
Gu
,
Y.
Wei
,
G.
Li
,
C.
Hao
, and
Q.
Lei
,
Adv. Eng. Mater.
23
,
2100008
(
2021
).
28.
J.
Wang
,
Y.
Long
,
Y.
Sun
,
X.
Zhang
,
H.
Yang
, and
B.
Lin
,
Appl. Surf. Sci.
426
,
437
(
2017
).
29.
X.-J.
Liu
,
M.-S.
Zheng
,
G.
Chen
,
Z.-M.
Dang
, and
J.-W.
Zha
,
Energy Environ. Sci.
15
,
56
(
2022
).
30.
L.
Cheng
,
K.
Liu
,
H.
Gao
,
Z.
Fan
,
N.
Takesue
,
H.
Deng
,
H.
Zhang
,
Y.
Hu
,
H.
Tan
,
Z.
Yan
, and
Y.
Liu
,
Chem. Eng. J.
435
,
135064
(
2022
).
31.
L.
Sun
,
Z.
Shi
,
H.
Wang
,
K.
Zhang
,
D.
Dastan
,
K.
Sun
, and
R.
Fan
,
J. Mater. Chem. A
8
,
5750
(
2020
).
32.
Z.
Li
,
Z.
Shen
,
X.
Yang
,
X.
Zhu
,
Y.
Zhou
,
L.
Dong
,
C.
Xiong
, and
Q.
Wang
,
Compos. Sci. Technol.
202
,
108591
(
2021
).
33.
J.
Chen
,
Y.
Li
,
Y.
Wang
,
J.
Dong
,
X.
Xu
,
Q.
Yuan
,
Y.
Niu
,
Q.
Wang
, and
H.
Wang
,
Compos. Sci. Technol.
186
,
107912
(
2020
).
34.
T.
Zhang
,
H.
Yu
,
Y. H.
Jung
,
C.
Zhang
,
Y.
Feng
,
Q.
Chen
,
K. J.
Lee
, and
Q.
Chi
,
Energy Environ. Mater.
0
,
e12549
(
2022
).
35.
S.
Sun
,
Z.
Shi
,
L.
Liang
,
T.
Li
,
S.
Zhang
,
W.
Xu
,
M.
Han
, and
M.
Zhang
,
J. Phys. Chem. C
125
,
22379
(
2021
).
36.
F.
Wang
,
Y.
Liu
,
H.
Zhao
,
L.
Cui
,
L.
Gai
,
X.
Han
, and
Y.
Du
,
Chem. Eng. J.
450
,
138160
(
2022
).
37.
M. S.
de Urquijo-Ventura
,
M. G. S.
Rao
,
S.
Meraz-Davila
,
J. A.
Torres-Ochoa
,
M. A.
Quevedo-Lopez
, and
R.
Ramirez-Bon
,
Polymer
191
,
122261
(
2020
).
38.
S.
Moharana
and
R. N.
Mahaling
,
J. Appl. Polym. Sci.
136
,
47850
(
2019
).
39.
H.
Chen
,
Z.
Pan
,
W.
Wang
,
Y.
Chen
,
S.
Xing
,
Y.
Cheng
,
X.
Ding
,
J.
Liu
,
J.
Zhai
, and
J.
Yu
,
Composites, A
142
,
106266
(
2021
).
40.
Y.
Zhang
,
Q.
Chi
,
L.
Liu
,
T.
Zhang
,
C.
Zhang
,
Q.
Chen
,
X.
Wang
, and
Q.
Lei
,
ACS Appl. Energy Mater.
1
,
6320
(
2018
).
41.
D.
Cheng
,
H.
Wang
,
B.
Liu
,
S.
Wang
,
Y.
Li
,
Y.
Xia
, and
C.
Xiong
,
J. Appl. Polym. Sci.
136
,
47991
(
2019
).
42.
L.
Li
,
J.
Cheng
,
Y.
Cheng
,
T.
Han
,
Y.
Liu
,
Y.
Zhou
,
G.
Zhao
,
Y.
Zhao
,
C.
Xiong
,
L.
Dong
, and
Q.
Wang
,
Adv. Mater.
33
,
2102392
(
2021
).
43.
H.
Chen
,
X.
Li
,
W.
Yu
,
J.
Wang
,
Z.
Shi
,
C.
Xiong
, and
Q.
Yang
,
Biomacromolecules
21
,
2929
(
2020
).
44.
Y.
Shang
,
Y.
Feng
,
C.
Zhang
,
T.
Zhang
,
Q.
Lei
, and
Q.
Chi
,
J. Mater. Chem. A
10
,
15183
(
2022
).
45.
S.
Wang
,
X.
Huang
,
G.
Wang
,
Y.
Wang
,
J.
He
, and
P.
Jiang
,
J. Phys. Chem.
C 119
,
25307
(
2015
).
46.
Y.
Wang
,
J.
Chen
,
Y.
Li
,
Y.
Niu
,
Q.
Wang
, and
H.
Wang
,
J. Mater. Chem. A
7
,
2965
(
2019
).
47.
Y.
Jiang
,
Z.
Luo
,
Y.
Huang
,
M.
Shen
,
H.
Huang
,
S.
Jiang
,
Y.
He
, and
Q.
Zhang
,
J. Mater. Chem. A
10
,
18950
(
2022
).
48.
Z.
Pan
,
L.
Li
,
L.
Wang
,
G.
Luo
,
X.
Xu
,
F.
Jin
,
J.
Dong
,
Y.
Niu
,
L.
Sun
,
C.
Guo
,
W.
Zhang
,
Q.
Wang
, and
H.
Wang
,
Adv. Mater.
35
,
2207580
(
2022
).
49.
M. A.
Marwat
,
W.
Ma
,
P.
Fan
,
H.
Elahi
,
C.
Samart
,
B.
Nan
,
H.
Tan
,
D.
Salamon
,
B.
Ye
, and
H.
Zhang
,
Energy Storage Mater.
31
,
492
(
2020
).

Supplementary Material

You do not currently have access to this content.