Photonic-crystal surface-emitting lasers (PCSELs) with modulated photonic crystals have attracted much attention for their unrivaled capabilities, such as broad area coherent resonance, and lens-free beam scanning and flash illumination. In this paper, we first explain the principles and the development of PCSELs with modulated photonic crystals toward non-mechanical two-dimensional (2D) beam-scanning applications. Then, we show PCSELs with modulated photonic crystals, whose modulation is designed based on an inverse Fourier transform to enable the emission of various beam patterns, such as flash patterns and multi-dot patterns, from a single photonic crystal without using external optical elements. This demonstration underscores the flexibility of PCSELs with modulated photonic crystals as compact, highly functional light sources for a wide range of applications, including not only beam-scanning-type, flash-type, and multidot-type light detection and ranging but also advanced object recognition and adaptive illumination.

1.
R. H.
Rasshofer
and
K.
Gresser
, “
Automotive radar and lidar systems for next generation driver assistance function
,”
Adv. Radio Sci.
3
,
205
209
(
2005
).
2.
H. W.
Yoo
,
N.
Druml
,
D.
Brunner
,
C.
Schwarzl
,
T.
Thurner
,
M.
Hennecke
, and
G.
Schitter
, “
MEMS-based lidar for autonomous driving
,”
Elektrotech. Inftech.
135
,
408
412
(
2018
).
3.
K.
Kidono
,
T.
Miyasaka
,
A.
Watanabe
,
T.
Naito
, and
J.
Miura
, “
Pedestrian recognition using high-definition LIDAR
,” in
IEEE Intelligent Vehicles Symposium (IV)
(IEEE, Baden-Baden, Germany, 2011), pp.
405
410
.
4.
J. F.
Lalonde
,
N.
Vandapel
,
D.
Huber
, and
M.
Hebert
, “
Natural terrain classification using three-dimensional ladar data for ground robot mobility
,”
J. Field Rob.
23
,
839
861
(
2006
).
5.
I.
Kim
, “
Nanophotonics for light detection and ranging technology
,”
Nat. Nanotechnol.
16
,
508
524
(
2021
).
6.
C. S.
Bamji
,
P.
O'Connor
,
T.
Elkhatib
,
S.
Mehta
,
B.
Thompson
,
L. A.
Prather
,
D.
Snow
,
O. C.
Akkaya
,
A.
Daniel
,
A. D.
Payne
,
T.
Perry
,
M.
Fenton
, and
V. H.
Chan
, “
A 0.13 μm CMOS system-on-chip for a 512 × 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC
,”
IEEE J. Solid-State Circuits
50
,
303
319
(
2015
).
7.
Y.
Kato
,
T.
Sano
,
Y.
Moriyama
,
S.
Maeda
,
T.
Yamazaki
,
A.
Nose
,
K.
Shiina
,
Y.
Yasu
,
W.
van der Tempel
,
A.
Ercan
,
Y.
Ebiko
,
D. V.
Nieuwenhove
, and
S.
Sukegawa
, “
320 × 240 back-illuminated 10-μm CAPD pixels for high-speed modulation time-of-flight CMOS image sensor
,”
IEEE J. Solid-State Circuits
53
,
1071
1078
(
2018
).
8.
N.
Radwell
,
A.
Selyem
,
L.
Mertens
,
M. P.
Edgar
, and
M. J.
Padgett
, “
Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR
,”
Sci. Rep.
9
,
5241
(
2019
).
9.
S.
Lee
,
K.
Yasutomi
,
M.
Morita
,
H.
Kawanishi
, and
S.
Kawahito
, “
A time-of-flight range sensor using four-tap lock-in pixels with high near infrared sensitivity for LiDAR applications
,”
Sensors
20
,
116
(
2019
).
10.
M.
Yoshida
,
M. D.
Zoysa
,
K.
Ishizaki
,
W.
Kunishi
,
T.
Inoue
,
K.
Izumi
,
R.
Hatsuda
, and
S.
Noda
, “
Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR
,”
J. Phys. Photonics
3
,
022006
(
2021
).
11.
P.
Tang
,
D.
Huber
,
B.
Akinci
,
R.
Lipman
, and
A.
Lytle
, “
Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques
,”
Automat. Constr.
19
,
829
843
(
2010
).
12.
G.
Kloppenburg
,
A.
Wolf
, and
R.
Lachmayer
, “
High-resolution vehicle headlamps: Technologies and scanning prototype
,”
Adv. Opt. Technol.
5
,
147
155
(
2016
).
13.
I.
Puente
,
H.
González-Jorge
,
J.
Martínez-Sánchez
, and
P.
Arias
, “
Review of mobile mapping and surveying technologies
,”
Measurement
46
,
2127
2145
(
2013
).
14.
M. J. R.
Heck
, “
Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering
,”
Nanophotonics
6
(
1
),
93
107
(
2017
).
15.
D. N.
Hutchison
,
J.
Sun
,
J. K.
Doylend
,
R.
Kumar
,
J.
Heck
,
W.
Kim
,
C. T.
Phare
,
A.
Feshali
, and
H.
Rong
, “
High-resolution aliasing-free optical beam steering
,”
Optica
3
(
8
),
887
890
(
2016
).
16.
H. S.
Ayoub
,
W. M.
Hussein
,
A. F.
El-Sherif
, and
Y. H.
Elbashar
, “
Design and test of high-efficiency dual-element laser diffuser for large-field automotive shadowgraphy
,”
J. Opt.
49
,
263
269
(
2020
).
17.
C.
Yu
,
X.
Chen
,
Z.
Zhang
,
G.
Song
,
J.
Lin
, and
J.
Xu
, “
Experimental verification of diffused laser beam-based optical wireless communication through air and water channels
,”
Opt. Commun.
495
,
127079
(
2021
).
18.
G.
Jie
,
Z.
Daqing
,
L.
Changping
, and
L.
Ximin
, “
Design of emission optical system for laser fuze with large FOV and miniaturization
,”
Infrared Laser Eng.
47
(
5
),
518001
(
2018
).
19.
D. C.
O'Shea
,
T. J.
Suleski
,
A. D.
Kathman
, and
D. W.
Prather
, “
Diffractive optics: Design, fabrication, and test
” (
SPIE Press
,
Bellingham, WA
,
2004
), Vol.
62
.
20.
M. S.
Khan
,
W. M.
Saeed
,
B.
Roth
, and
R.
Lachmayer
, “
Diffractive optics based automotive lighting system: A rear end lamp design for communication between road users
,”
Adv. Opt. Technol.
10
,
49
57
(
2021
).
21.
T.
Okino
,
Y.
Liang
,
K.
Kitamura
, and
S.
Noda
, “
Beam-direction control by modulated photonic-crystal lasers
,” in
60th Japanese Society Applied Physics Spring Meeting
,
2013
.
22.
S.
Noda
,
K.
Kitamura
,
T.
Okino
,
D.
Yasuda
, and
Y.
Tanaka
, “
Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
1
(
2017
).
23.
Y.
Tanaka
,
A.
Nishigo
,
K.
Kitamura
,
J.
Gelleta
, and
S.
Noda
, “
Modulated photonic-crystal surface-emitting laser with elliptical lattice points for two-dimensional coupling enhancement
,”
AIP Adv.
9
,
115204
(
2019
).
24.
R.
Sakata
,
K.
Ishizaki
,
M. D.
Zoysa
,
S.
Fukuhara
,
T.
Inoue
,
Y.
Tanaka
,
K.
Iwata
,
R.
Hatsuda
,
M.
Yoshida
,
J.
Gelleta
, and
S.
Noda
, “
Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers
,”
Nat. Commun.
11
,
3487
(
2020
).
25.
R.
Sakata
,
M. D.
Zoysa
,
M.
Yoshikawa
,
T.
Inoue
,
K.
Ishizaki
,
J.
Gelleta
,
R.
Hatsuda
, and
S.
Noda
, “
Dually modulated photonic crystal lasers for wide-range flash illumination
,”
Opt. Express
30
,
26043
26056
(
2022
).
26.
K.
Ishizaki
,
T.
Inoue
,
R.
Sakata
,
M. D.
Zoysa
,
A.
Imamura
,
R.
Hatsuda
, and
S.
Noda
, “
Emission of multi beams from dually modulated PCSELs
,” in
82th Japanese Society Applied Physics Autumn Meeting
,
2021
.
27.
R.
Sakata
,
M. D.
Zoysa
,
M.
Yoshikawa
,
H.
Zhao
,
T.
Inoue
,
K.
Ishizaki
, and
S.
Noda
, “
Generation of a variety of beam shapes by dually modulated photonic crystal lasers
,” in
69th Japanese Society Applied Physics Spring Meeting
,
2022
.
28.
M.
Imada
,
S.
Noda
,
A.
Chutinan
, and
T.
Tokuda
, “
Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure
,”
Appl. Phys. Lett.
75
,
316
318
(
1999
).
29.
S.
Noda
,
M.
Yokoyama
,
M.
Imada
,
A.
Chutinan
, and
M.
Mochizuki
, “
Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design
,”
Science
293
,
1123
1125
(
2001
).
30.
E.
Miyai
,
K.
Sakai
,
T.
Okano
,
W.
Kunishi
,
D.
Ohnishi
, and
S.
Noda
, “
Lasers producing tailored beams
,”
Nature
441
,
946
946
(
2006
).
31.
H.
Matsubara
,
S.
Yoshimoto
,
H.
Saito
,
Y.
Jianglin
,
Y.
Tanaka
, and
S.
Noda
, “
GaN photonic-crystal surface-emitting laser at blue-violet wavelengths
,”
Science
319
,
445
447
(
2008
).
32.
K.
Emoto
,
T.
Koizumi
,
M.
Hirose
,
M.
Jutori
,
T.
Inoue
,
K.
Ishizaki
,
M. D.
Zoysa
,
H.
Togawa
, and
S.
Noda
, “
Wide-bandgap GaN-based watt-class photonic-crystal lasers
,”
Commun. Mater.
3
,
72
(
2022
).
33.
K.
Hirose
,
Y.
Liang
,
Y.
Kurosaka
,
A.
Watanabe
,
T.
Sugiyama
, and
S.
Noda
, “
Watt-class high-power, high-beam-quality photonic crystal lasers
,”
Nat. Photonics
8
,
406
411
(
2014
).
34.
M.
Yoshida
,
M. D.
Zoysa
,
K.
Ishizaki
,
Y.
Tanaka
,
M.
Kawasaki
,
R.
Hatsuda
,
B. S.
Song
,
J.
Gelleta
, and
S.
Noda
, “
Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams
,”
Nat. Mater.
18
,
121
128
(
2019
).
35.
T.
Inoue
,
M.
Yoshida
,
J.
Gelleta
,
K.
Izumi
,
K.
Yoshida
,
K.
Ishizaki
,
M.
De Zoysa
, and
S.
Noda
, “
General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation
,”
Nat. Commun.
13
,
3262
(
2022
).
36.
R.
Morita
,
T.
Inoue
,
M. D.
Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation
,”
Nat. Photonics
15
,
311
318
(
2021
).
37.
Y.
Liang
,
Z.
Wang
,
J.
Wolf
,
E.
Gini
,
M.
Beck
,
B.
Meng
,
J.
Faist
, and
G.
Scalari
, “
Room temperature surface emission on large-area photonic crystal quantum cascade lasers
,”
Appl. Phys. Lett.
114
,
031102
(
2019
).
38.
Z.
Wang
,
Y.
Liang
,
B.
Meng
,
Y.
Sun
,
G.
Omanakuttan
,
E.
Gini
,
M.
Beck
,
I.
Sergachev
,
S.
Lourdudoss
,
J.
Faist
, and
G.
Scalari
, “
Large area photonic crystal quantum cascade laser with 5 W surface-emitting power
,”
Opt. Express
27
,
22708
22716
(
2019
).
39.
D.
Botez
, “
Active photonic lattices: Lasers for Watt-range coherent-power generation
,”
Proc. SPIE
4905
,
78
(
2002
).
40.
S.
Li
and
D.
Botez
, “
Analysis of 2D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation
,”
IEEE J. Quantum Electron.
43
,
655
(
2007
).
You do not currently have access to this content.