We use a high pattern-fidelity technique on piezoelectric electrodes to selectively excite high-order vibration modes, while isolating other modes, in multi-layered through-wall ultrasound power transfer (TWUPT) systems. Physical mechanisms, such as direct and inverse piezoelectric effects at transmitting and receiving piezoelectric elements, as well as wave propagation across an elastic barrier and coupling layers, all contribute to TWUPT. High-order radial modes in a TWUPT system feature strain nodes, where the dynamic strain distribution changes sign in the direction of disks' radii. This study explains theoretically and empirically how covering the strain nodes of vibration modes with continuous electrodes results in substantial cancelations of the electrical outputs. A detailed analysis is given for predicting the locations of the strain nodes. The electrode patterning for creating the transmitter and receiver shapes is determined by the regions where local force and charge cancelation do not occur, i.e., the two modal principal stress components have the same sign. Patterning for creating the electrode shapes is performed by high-fidelity numerical modeling supported by experiments. Using differential excitation on the transmitter side while monitoring transmitted power and efficiency on the reception side at various vibration modes is made possible by the unique nature of TWUPT systems. Due to an improvement in system quality and power factors, it is determined that employing the proposed electrode pattern designs enhances overall device efficiency and active power. The suppression of other modes makes up a filter feature that is paired with the enhancement at the mode under consideration.

1.
S.
Shahab
and
A.
Erturk
, “
Contactless ultrasonic energy transfer for wireless systems: Acoustic-piezoelectric structure interaction modeling and performance enhancement
,”
Smart Mater. Struct.
23
(
12
),
125032
(
2014
).
2.
S.
Shahab
,
M.
Gray
, and
A.
Erturk
, “
Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment
,”
J. Appl. Phys.
117
(
10
),
104903
(
2015
).
3.
A.
Sallam
,
V. C.
Meesala
,
M. R.
Hajj
, and
S.
Shahab
, “
Holographic mirrors for spatial ultrasound modulation in contactless acoustic energy transfer systems
,”
Appl. Phys. Lett.
119
(
14
),
144101
(
2021
).
4.
A.
Sallam
and
S.
Shahab
, “
On nonlinear effects in holographic-modulated ultrasound
,”
Appl. Phys. Lett.
121
(
20
),
204101
(
2022
).
5.
M.
Bakhtiari-Nejad
,
A.
Elnahhas
,
M. R.
Hajj
, and
S.
Shahab
, “
Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment
,”
J. Appl. Phys.
124
(
24
),
244901
(
2018
).
6.
Y.
Hu
,
X.
Zhang
,
J.
Yang
, and
Q.
Jiang
, “
Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
(
7
),
773
781
(
2003
).
7.
X.
Wang
,
Z.
Shi
, and
G.
Song
, “
Analytical study of influence of boundary conditions on acoustic power transfer through an elastic barrier
,”
Smart Mater. Struct.
28
(
2
),
025004
(
2018
).
8.
M.
Sayed Ahmed
,
M.
Ghommem
, and
S.
Shahab
, “
Mode couplings in multiplex electromechanical structures
,”
J. Appl. Phys.
132
(
12
),
124901
(
2022
).
9.
D. J.
Graham
,
J. A.
Neasham
, and
B. S.
Sharif
, “
Investigation of methods for data communication and power delivery through metals
,”
IEEE Trans. Indus. Electron.
58
(
10
),
4972
4980
(
2011
).
10.
C. U.
Grosse
,
M.
Ohtsu
,
D. G.
Aggelis
, and
T.
Shiotani
,
Acoustic Emission Testing: Basics for Research—Applications in Engineering
(
Springer Nature
,
2021
).
11.
E. F.
Crawley
and
J. D.
Luis
, “
Use of piezoelectric actuators as elements of intelligent structures
,”
AIAA J.
25
(
10
),
1373
1385
(
1987
).
12.
A.
Erturk
,
P. A.
Tarazaga
,
J. R.
Farmer
, and
D. J.
Inman
, “
Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams
,”
J. Vib. Acoust.
131
(
1
),
011010
(
2009
).
13.
C.-K.
Lee
and
F. C.
Moon
, “
Modal sensors/actuators
,”
J. Appl. Mech.
57
,
434
441
(
1990
).
14.
J. S.
Pulskamp
,
S. S.
Bedair
,
R. G.
Polcawich
,
G. L.
Smith
,
J.
Martin
,
B.
Power
, and
S. A.
Bhave
, “
Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
(
5
),
1043
1060
(
2012
).
15.
T.
Matsumura
,
M.
Esashi
,
H.
Harada
,
F.
Thalmayr
,
K.-y.
Hashimoto
, and
S.
Tanaka
, “
Selective mode excitation of piezoelectric disk-type resonator by electrode pattern definition
,” in
IEEE International Ultrasonics Symposium
(
IEEE
,
2010
), pp.
979
982
.
16.
A.
Prak
,
M.
Elwenspoek
, and
J. H.
Fluitman
, “
Selective mode excitation and detection of micromachined resonators
,”
J. Microelectromech. Syst.
1
(
4
),
179
186
(
1992
).
17.
H. A.
Tilmans
,
D. J.
IJntema
, and
J. H.
Fluitman
, “
Single element excitation and detection of (micro-) mechanical resonators
,” in
Proceedings of International Conference on Solid-State Sensors and Actuators (TRANSDUCERS'91)
,
San Francisco, CA
(
IEEE
,
1991
), pp.
533
537
.
18.
A.
Elka
and
I.
Bucher
, “
Optimal electrode shaping for precise modal electromechanical filtering
,”
Struct. Multidiscip. Optim.
38
(
6
),
627
641
(
2009
).
19.
J.
Sanchez-Rojas
,
J.
Hernando
,
A.
Donoso
,
J.
Bellido
,
T.
Manzaneque
,
A.
Ababneh
,
H.
Seidel
, and
U.
Schmid
, “
Modal optimization and filtering in piezoelectric microplate resonators
,”
J. Micromech. Microeng.
20
(
5
),
055027
(
2010
).
20.
S.
Sherrit
,
S. P.
Leary
,
B. P.
Dolgin
, and
Y.
Bar-Cohen
, “
Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode
,” in
IEEE Ultrasonics Symposium (Cat. No. 99CH37027)
(
IEEE
,
1999
), Vol.
2
, pp.
921
926
.
21.
S.
Sherrit
,
M.
Badescu
,
X.
Bao
,
Y.
Bar-Cohen
, and
Z.
Chang
, “
Efficient electromechanical network model for wireless acoustic-electric feed-throughs
,”
Proc. SPIE
5758
,
362
372
(
2005
).
22.
X.
Bao
,
B. J.
Doty
,
S.
Sherrit
,
M.
Badescu
,
Y.
Bar-Cohen
,
J.
Aldrich
, and
Z.
Chang
, “
Wireless piezoelectric acoustic-electric power feedthru
,”
Proc. SPIE
6529
,
652940
(
2007
).
23.
K.
Wilt
,
H.
Scarton
,
S.
Roa-Prada
,
G.
Saulnier
,
J.
Ashdown
,
T.
Lawry
,
P.
Das
, and
A.
Gavens
, “
Finite element modeling and simulation of a two-transducer through-wall ultrasonic communication system
,”
ASME Int. Mech. Eng. Congr. Expo.
43888
,
579
589
(
2009
).
24.
M. A. S.
Ahmed
,
B.
Robert
,
M.
Ghommem
, and
S.
Shahab
, “
Genetic algorithm optimization for through-wall ultrasound power transfer systems
,”
Proc. SPIE
PC12043
, Active and Passive Smart Structures and Integrated Systems XV (
2022
).
25.
R. L.
Lin
,
F. C.
Lee
,
E. M.
Baker
, and
D. Y.
Chen
, “
Inductor-less piezoelectric transformer electronic ballast for linear fluorescent lamp
,” in
Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 01CH37181) (APEC 2001)
(
IEEE
,
2001
), Vol.
2
, pp.
664
669
.
26.
A.
Bhargava
,
V. C.
Meesala
,
M. R.
Hajj
, and
S.
Shahab
, “
Nonlinear effects in high-intensity focused ultrasound power transfer systems
,”
Appl. Phys. Lett.
117
(
6
),
064101
(
2020
).
27.
V. C.
Meesala
,
M. R.
Hajj
, and
S.
Shahab
, “
Analysis and prediction of shock formation in acoustic energy transfer systems
,”
J. Appl. Phys.
128
(
23
),
234902
(
2020
).
28.
T.
Lawry
,
K.
Wilt
,
S.
Roa-Prada
,
J.
Ashdown
,
G.
Saulnier
,
H.
Scarton
,
P.
Das
, and
J.
Pinezich
, “
Electrical optimization of power delivery through thick steel barriers using piezoelectric transducers
,”
Proc. SPIE
7683
,
216
227
(
2010
).
29.
S.
Lin
and
J.
Xu
, “
Effect of the matching circuit on the electromechanical characteristics of sandwiched piezoelectric transducers
,”
Sensors
17
(
2
),
329
(
2017
).
You do not currently have access to this content.