In this work, top-gate structured W: F co-doped Zn–Sn–O (ZTO) thin-film transistors (TFTs) with excellent stability are prepared by the solution process. Comparing with the undoped ZTO TFT, the mobility of W: F co-doped ZTO TFTs was up from 1.87 to 3.14 cm2 V−1 s−1, and the subthreshold swing decreases from 0.192 to 0.157 V/dec. Moreover, the W: F co-doped ZTO TFTs exhibit a small Vth shift of −0.09 V under negative bias illumination stress, which is close to one of the TFTs prepared by the traditional vacuum process. X-ray photoelectron spectroscopy and capacitance–voltage examination revealed that the enhanced stability is due to the fact that W: F co-doping can effectively suppress defect states in ZTO films. The results manifest that W: F co-doping may be a promising method for enhancing the stability of TFTs with the top-gate structure.

1.
T. J.
Yen
,
A.
Chin
, and
V.
Gritsenko
,
Nanomaterials
10
(
11
),
2145
(
2020
).
2.
R.
Chen
and
L.
Lan
,
Nanotechnology
30
(
31
),
312001
(
2019
).
3.
J.-S.
Park
,
J. K.
Jeong
,
H.-J.
Chung
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
92
(
7
),
072104
(
2008
).
4.
X.
Yang
,
Y.
Gao
, and
X.
Li
,
Optoelectron. Adv. Mater. Rapid Commun.
13
,
343
347
(
2019
).
5.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
,
Nat. Mater.
15
(
4
),
383
396
(
2016
).
6.
X.
Yang
,
S.
Jiang
,
J.
Li
,
J.-H.
Zhang
, and
X.-F.
Li
,
RSC Adv.
8
(
37
),
20990
20995
(
2018
).
7.
C.
Rao
,
J. Phys. Chem. Lett.
6
(
16
),
3303
3308
(
2015
).
8.
J.
Su
,
Y.
Ma
,
H.
Yang
,
R.
Li
,
L.
Jia
,
D.
Liu
, and
X.
Zhang
,
J. Vacuum Sci. Technol. A: Vacuum, Surf., Films
37
(
6
),
061511
(
2019
).
9.
K.
Saw
,
N.
Aznan
,
F.
Yam
,
S.
Ng
, and
S.
Pung
,
PLoS ONE
10
(
10
),
e0141180
(
2015
).
10.
Y.
Duan
,
J.
Zheng
,
M.
Xu
,
X.
Song
,
N.
Fu
,
Y.
Fang
,
X.
Zhou
,
Y.
Lin
, and
F.
Pan
,
J. Mater. Chem. A
3
(
10
),
5692
5700
(
2015
).
11.
J.-T.
Li
,
L.-C.
Liu
,
J.-S.
Chen
,
J.-S.
Jeng
,
P.-Y.
Liao
,
H.-C.
Chiang
,
T.-C.
Chang
,
M. I.
Nugraha
, and
M. A.
Loi
,
Appl. Phys. Lett.
110
(
2
),
023504
(
2017
).
12.
Y.-J.
Choi
,
K.-M.
Kang
, and
H.-H.
Park
,
Sol. Energy Mater. Sol. Cells
132
,
403
409
(
2015
).
13.
R. G.
Gordon
,
MRS Bull.
25
(
8
),
52
57
(
2000
).
14.
F.-H.
Wang
,
C.-F.
Yang
, and
Y.-H.
Lee
,
Nanoscale Res. Lett.
9
(
1
),
300
(
2014
).
15.
J.
Ma
,
D.
Lin
,
P.
Li
,
G.
Yang
, and
Y.
Liu
,
Chin. Sci. Bull.
65
(
25
),
2678
2690
(
2020
).
16.
W.
Pan
,
X.
Zhou
,
Q.
Lin
,
J.
Chen
,
L.
Lu
, and
S.
Zhang
,
J. Mater. Chem. C
10
(
8
),
3129
3138
(
2022
).
17.
D.-Y.
Zhong
,
J.
Li
,
C.-Y.
Zhao
,
C.-X.
Huang
,
J.-H.
Zhang
,
X.-F.
Li
,
X.-Y.
Jiang
, and
Z.-L.
Zhang
,
IEEE Trans. Electron Devices
65
(
2
),
520
525
(
2018
).
18.
H.
Zhang
,
L.
Liang
,
X.
Wang
,
Z.
Wu
, and
H.
Cao
,
IEEE Trans. Electron Devices
69
(
1
),
152
155
(
2022
).
19.
M.-J.
Park
,
J.-Y.
Bak
,
J.-S.
Choi
, and
S.-M.
Yoon
, presented at the
2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)
, Kyoto, Japan,
2014
.
20.
Y.
Liu
,
C.
Liu
,
H.
Qin
,
C.
Peng
,
M.
Lu
,
Z.
Chen
, and
Y.
Zhao
,
Membranes
11
(
11
),
902
(
2021
).
21.
J.
Li
,
Y.-H.
Zhou
,
D.-Y.
Zhong
,
X.-F.
Li
, and
J.-H.
Zhang
,
IEEE Trans. Electron Devices
66
(
10
),
4205
4210
(
2019
).
22.
J.
Li
,
Q.
Chen
,
Y.-H.
Yang
,
Y.-H.
Zhou
,
D.-Y.
Zhong
,
W.-Q.
Zhu
,
J.-H.
Zhang
, and
Z.-L.
Zhang
,
J. Phys. D: Appl. Phys.
52
(
31
),
315105
(
2019
).
23.
H.
Xu
,
M.
Xu
,
M.
Li
,
Z.
Chen
,
J.
Zou
,
W.
Wu
,
X.
Qiao
,
H.
Tao
,
L.
Wang
,
H.
Ning
,
D.
Ma
, and
J.
Peng
,
ACS Appl. Mater. Interfaces
11
(
5
),
5232
5239
(
2019
).
24.
W.
Song
,
L.
Lan
,
M.
Li
,
L.
Wang
,
Z.
Lin
,
S.
Sun
,
Y.
Li
,
E.
Song
,
P.
Gao
,
Y.
Li
, and
J.
Peng
,
J. Phys. D: Appl. Phys.
50
(
38
),
385108
(
2017
).
25.
Y.
Ding
,
T.
Li
,
B.
Yan
,
G.
Liu
, and
F.
Shan
,
Appl. Phys. Lett.
121
(
26
),
263301
(
2022
).
26.
Y.
Ding
,
Y.
Ren
,
G.
Liu
, and
F.
Shan
,
IEEE Trans. Electron Devices
69
(
7
),
3722
3726
(
2022
).
You do not currently have access to this content.