We propose and test an exchange gas technique for improving the cooldown times of cryocooled gravitational-wave interferometers. The technique works by utilizing low-pressure dry nitrogen gas to create a path for heat conduction to test masses while protecting the rest of the in-vacuum equipment from unwanted heat leakage. We show that the technique is capable of shortening the total wait time to reach the operating temperature by a factor of 3.5. Additionally, our tests show that the improvement in the heat transfer rate can be predicted to be within 10% error by using the Sherman-Lees interpolation equation. The technique is compatible with vibration isolation requirements of the cryogenic shielding of 124 K silicon interferometers and has the potential to improve the iteration time for research and development. The scalability of the prototype, the ability to predict the heat conduction, and the simplicity of the engineering make the strategy a good candidate to be included in the cryogenic design of future cryocooled gravitational-wave interferometers. The findings mark a first step in the investigation for a strategy to mitigate ice formation on the interferometer optics during initial cooldown.

1.
B. P.
Abbott
,
R.
Abbott
,
T.
Abbott
,
M.
Abernathy
,
F.
Acernese
,
K.
Ackley
,
C.
Adams
,
T.
Adams
,
P.
Addesso
,
R.
Adhikari
 et al., “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
2.
The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration et al., “GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run,” eprint arXiv:2111.03606 (
2021
).
3.
D.
Reitze
,
R. X.
Adhikari
,
S.
Ballmer
 et al., “
Cosmic Explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO
,” https://baas.aas.org/pub/2020n7i035 (2019).
4.
M.
Punturo
,
M.
Abernathy
,
F.
Acernese
,
B.
Allen
,
N.
Andersson
,
K.
Arun
,
F.
Barone
,
B.
Barr
,
M.
Barsuglia
,
M.
Beker
 et al., “
The Einstein Telescope: A third-generation gravitational wave observatory
,”
Class. Quantum Gravity
27
,
194002
(
2010
).
5.
K.
Ackley
,
V.
Adya
,
P.
Agrawal
,
P.
Altin
,
G.
Ashton
,
M.
Bailes
,
E.
Baltinas
,
A.
Barbuio
,
D.
Beniwal
,
C.
Blair
 et al., “
Neutron star extreme matter observatory: A kilohertz-band gravitational-wave detector in the global network
,”
Publ. Astron. Soc. Australia
37
,
e047
(
2020
).
6.
T.
Akutsu
and
The KAGRA collaboration
, “
Large-scale cryogenic gravitational-wave telescope in Japan: KAGRA
,”
J. Phys.: Conf. Ser.
610
,
012016
(
2015
).
7.
J.
Harms
,
F.
Ambrosino
,
L.
Angelini
,
V.
Braito
,
M.
Branchesi
 et al., “
Lunar gravitational-wave antenna
,”
Astrophys. J.
910
,
1
(
2021
).
8.
K.
Danzmann
and
LISA study Team
, “
LISA: Laser interferometer space antenna for gravitational wave measurements
,”
Class. Quantum Gravity
13
,
A247
A250
(
1996
).
9.
J.
Miller
,
L.
Barsotti
,
S.
Vitale
,
P.
Fritschel
,
M.
Evans
, and
D.
Sigg
, “
Prospects for doubling the range of advanced LIGO
,”
Phys. Rev. D
91
,
062005
(
2015
).
10.
R. X.
Adhikari
,
K.
Arai
,
A.
Brooks
,
C.
Wipf
,
O.
Aguiar
,
P.
Altin
,
B.
Barr
,
L.
Barsotti
,
R.
Bassiri
,
A.
Bell
 et al., “
A cryogenic silicon interferometer for gravitational-wave detection
,”
Class. Quantum Gravity
37
,
165003
(
2020
).
11.
The Virgo Collaboration
, “
Advanced Virgo Plus phase I. Design report
,” Technical Report No. VIR-0596A-19 (
2019
), https://tds.virgo-gw.eu/?content=3&r=15777.
12.
KAGRA6 and the Einstein Telescope4 also work at cryogenic temperatures but much lower than 124 K. While the exchange gas technique in this article could prove useful in their context, the detailed implementation needs to be adapted to fit the specific constraints of those detectors.
13.
Higher thermal conductivity implies that the temperature of silicon optics will be more uniform than fused silica optics. Consequently, thermal distortions caused by absorbed laser power will be reduced in the silicon optics.
14.
T.
Middelmann
,
A.
Walkov
,
G.
Bartl
, and
R.
Schödel
, “
Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K
,”
Phys. Rev. B
92
,
174113
(
2015
).
15.
As an example, consider the heat flux between two plates at 85 and 200 K. Even with unity emissivity, we expect about 90W/m2 of radiative cooling, whereas conduction through a 1 mm gap of air can transport over 1000 W/m2.
16.
K.
Hasegawa
,
T.
Akutsu
,
N.
Kimura
,
Y.
Saito
,
T.
Suzuki
,
T.
Tomaru
,
A.
Ueda
, and
S.
Miyoki
, “
Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes
,”
Phys. Rev. D
99
,
022003
(
2019
).
17.
J.
Steinlechner
and
I. W.
Martin
, “
Thermal noise from icy mirrors in gravitational wave detectors
,”
Phys. Rev. Res.
1
,
013008
(
2019
).
18.
E.
Bonilla
, “
Ice layer formation in vacuum environments
,” Technical Document No. T1900786 (
LIGO
,
2019
).
19.
L.
Spallino
,
M.
Angelucci
,
A.
Pasqualetti
,
K.
Battes
,
C.
Day
,
S.
Grohmann
,
E.
Majorana
,
F.
Ricci
, and
R.
Cimino
, “
Cryogenic vacuum considerations for future gravitational wave detectors
,”
Phys. Rev. D
104
,
062001
(
2021
).
20.
Estimates for a 200 kg mass place the cooldown time anywhere between 3 and 7 days, depending on geometric details of the cryo shields.
21.
B.
Shapiro
,
R. X.
Adhikari
,
O.
Aguiar
,
E.
Bonilla
,
D.
Fan
,
L.
Gan
,
I.
Gomez
,
S.
Khandelwal
,
B.
Lantz
,
T.
MacDonald
 et al., “
Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories
,”
Cryogenics
81
,
83
92
(
2017
).
22.
R.
Bywaters
and
R.
Griffin
, “
A gas-gap thermal switch for cryogenic applications
,”
Cryogenics
13
,
344
349
(
1973
).
23.
H.-M.
Chang
and
H.-J.
Kim
, “
Development of a thermal switch for faster cool-down by two-stage cryocooler
,”
Cryogenics
40
,
769
777
(
2000
).
24.
T.
Poole
,
T.
Foster
, and
A.
Matthews
, “
Gas-gap heat switches with negative room temperature conductor separation and their application to ultra-low temperature platforms
,”
Cryogenics
130
,
103632
(
2023
).
25.
T.
Flynn
,
Cryogenic Engineering, Revised and Expanded
(
CRC Press
,
Boca Raton
,
2004
).
26.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
27.
W.
Trott
,
D.
Rader
,
J.
Castaneda
,
J.
Torczynski
, and
M.
Gallis
, “
Experimental measurements of thermal accommodation coefficients for microscale gas-phase heat transfer
,” in
39th AIAA Thermophysics Conference
,
2007
.
28.
The original version of this equation is known as Knudsen's formula, as mentioned in Ref. 29, the correction factor for internal degrees of freedom is attributed to Bird,27 and we used the succinct form given in Ref. 26.
29.
E. H.
Kennard
,
Kinetic Theory of Gases
(
McGraw-Hill
,
New York
,
1938
).
30.
J.
Jensen
,
R. G.
Stewart
,
W.
Tuttle
,
H.
Brechna
, and
A.
Prodell
,
Brookhaven National Laboratory Selected Cryogenic Data Notebook: Section VI. Properties of Nitrogen
(
Brookhaven National Laboratory
,
1980
).
31.
F. S.
Sherman
, “
A survey of experimental results and methods for the transition regime of rarefied gas dynamics
,” in
Rarefied Gas Dynamics: Proceedings of the Third International Symposium on Rarefied Gas Dynamics
, edited by
J. A.
Laurmann
(
Academic Press
,
Cambridge
,
1963
), Vol.
2
, pp.
228
260
.
32.
L.
Lees
, “
Kinetic theory description of rarefied gas flow
,”
J. Soc. Ind. Appl. Math.
13
,
278
311
(
1965
).
33.
F. W.
Burkholder
, “
Transition regime heat conduction of argon/hydrogen and xenon/hydrogen mixtures in a parabolic trough receiver
,” Ph.D. thesis (
University of Colorado at Boulder
,
2011
).
34.
A factor of 100 less outer pressure translates into 100 times less heat conduction in the free-molecular flow regime when compared to the volume inside the inner shields.
35.
A. L.
McFall
, “
The thermal accommodation coefficient of helium and argon on an amorphous silicon-dioxide surface
,” in
Rarefied Gas Dynamics, Parts I and II
, edited by
S. S.
Fisher
(
American Institute of Aeronautics and Astronautics
,
Reston
,
1978
).
36.
For example, helium has been proposed as an exchange gas during steady-state operation of the Einstein Telescope.44 
37.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Krieger Publisher Company
,
Malabar
,
FL
,
1975
).
38.
J. N.
Tilton
, “
Fluid and particle dynamics
,” in
Perry's Chemical Engineers' Handbook
, 7th ed., edited by
R. H.
Perry
and
D. W.
Green
(
McGraw-Hill
,
New York
,
1997
), Chap. 6.
39.
P.
Flubacher
,
A.
Leadbetter
, and
J.
Morrison
, “
The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra
,”
Philos. Mag.
4
,
273
294
(
1959
).
40.
R.
Chartrand
, “
Numerical differentiation of noisy, nonsmooth data
,”
ISRN Appl. Math.
2011
,
164564
.
41.
M.
Constancio
, Jr.
,
R. X.
Adhikari
,
O. D.
Aguiar
,
K.
Arai
,
A.
Markowitz
,
M. A.
Okada
, and
C. C.
Wipf
, “
Silicon emissivity as a function of temperature
,”
Int. J. Heat Mass Transfer
157
,
119863
(
2020
).
42.
A.
Berman
,
Vacuum Engineering Calculations, Formulas, and Solved Exercises
(
Academic Press
,
Cambridge
,
MA
,
2012
).
43.
Q. S.
Shu
,
J. A.
Demko
, and
J. E.
Fesmire
, “
Heat switch technology for cryogenic thermal management
,”
IOP Conf. Ser.
278
,
012133
(
2017
).
44.
C.
Reinhardt
,
A.
Franke
,
J.
Schaffran
,
R.
Schnabel
, and
A.
Lindner
, “
Gas cooling of test masses for future gravitational-wave observatories
,”
Class. Quantum Gravity
38
,
185003
(
2021
).
You do not currently have access to this content.