Millimeter wave absorption exceeding 70 GHz has been performed in a Co-substituted Ca–La magnetoplumbite (M-type) ferrite. A polymerized complex method was used to increase the substitution of La and Co ions in the M-type ferrite. The increase in the magnetic anisotropy field combined with the remaining significant saturation magnetization results in good magnetic resonance absorption in the millimeter range of 70–100 GHz. Above 70 GHz, good millimeter wave absorption of more than −20 dB was achieved in 0.25 mm thickness plates of Ca0.46La0.54Fe11Co0.28O19‐η and Ca0.42La0.58Fe11Co0.58O19‐η. Highly Co-substituted Ca–La M-type ferrites may, thus, be promising candidates for magnetic absorption materials operating in frequencies of up to 100 GHz.

1.
A.
Pellegrini
,
A.
Brizzi
,
L.
Zhang
,
K.
Ali
,
Y.
Hao
,
X.
Wu
,
C. C.
Constantinou
,
Y.
Nechayev
,
P. S.
Hall
,
N.
Chahat
,
M.
Zhadobov
, and
R.
Sauleau
,
IEEE Antennas Propag. Mag.
55
,
262
(
2013
).
2.
C.
Waldschmidt
,
J.
Hasch
, and
W.
Menzel
,
IEEE J. Microwave
1
,
135
(
2021
).
3.
A.
Choudhary
,
S.
Pal
, and
G.
Sarkhel
, “
Broadband millimeter-wave absorbers: A review
,”
Int. J. Microwave Wirel. Technol.
(published online, 2022).
4.
X.
Zeng
,
X.
Cheng
,
R.
Yu
, and
G. D.
Stucky
,
Carbon
168
,
606
(
2020
).
5.
R. C.
Pullar
,
Prog. Mater. Sci.
57
,
1191
(
2012
).
6.
K. A.
Korolev
,
C.
Wu
,
Z.
Yu
,
K.
Sun
,
M. N.
Afsar
, and
V. G.
Harris
,
AIP Adv.
8
,
056440
(
2018
).
7.
D. A.
Vinnik
,
I. A.
Ustinova
,
A. B.
Ustinov
,
S. A.
Gudkova
,
D. A.
Zherebtsov
,
E. A.
Trofimov
,
N. S.
Zabeivorota
,
G. G.
Mikhailov
, and
R.
Niewa
,
Ceram. Int.
43
,
15800
(
2017
).
8.
S.
Ohkoshi
and
H.
Tokoro
,
Bull. Chem. Soc. Jpn.
86
,
897
(
2013
).
9.
A.
Namai
,
K.
Ogata
,
M.
Yoshikiyo
, and
S.
Ohkoshi
,
Bull. Chem. Soc. Jpn.
93
,
20
(
2020
).
10.
J. C.
Slonczewski
,
Phys. Rev.
110
,
1341
(
1958
).
11.
T.
Waki
,
S.
Okazaki
,
Y.
Tabata
,
M.
Kato
,
K.
Hirota
, and
H.
Nakamura
,
Mater. Res. Bull.
104
,
87
(
2018
).
12.
Y.
Kobayashi
,
S.
Hosokawa
,
E.
Oda
, and
Y.
Toyota
,
J. Jpn. Soc. Powder Powder Metall.
55
,
541
(
2008
).
13.
T.
Kikuchi
,
T.
Nakamura
,
T.
Yamasaki
,
M.
Nakanishi
,
T.
Fujii
,
J.
Takada
, and
Y.
Ikeda
,
IOP Conf. Ser.: Mater. Sci. Eng.
18
,
092040
(
2011
).
14.
T.
Waki
,
K.
Uji
,
Y.
Tabata
, and
H.
Nakamura
,
J. Solid State Chem.
270
,
366
(
2019
).
15.
N.
Ichinose
and
K.
Kurihara
,
J. Phys. Soc. Jpn.
18
,
1700
(
1963
).
16.
K.
Uji
,
T.
Waki
,
Y.
Tabata
, and
H.
Nakamura
,
J. Solid State Chem.
245
,
17
(
2017
).
17.
D.
Holtstam
and
U.
Hålenius
,
Miner. Mag.
84
,
376
(
2020
).
18.
C.-C.
Huang
,
S.-H.
Lin
,
C.-C.
Mo
,
T.-H.
Hsiao
,
Y.-H.
Tai
,
Y.-H.
Hung
,
C.-H.
Chiu
,
H.-H.
Hsu
, and
C.-H.
Cheng
,
IEEE Trans. Magn.
57
,
2101307
(
2021
).
19.
F.
Lotgering
and
M.
Huyberts
,
Solid State Commun.
34
,
49
(
1980
).
20.
E.
Pollert
,
Prog. Cryst. Growth Charact.
11
,
155
(
1985
).
21.
M.
Kakihana
,
J. Ceram. Soc. Jpn.
117
,
857
(
2009
).
22.
G.
Asti
and
S.
Rinaldi
,
J. Appl. Phys.
45
,
3600
(
1974
).
23.
A. M.
Nicolson
and
G. F.
Ross
,
IEEE Trans. Instrum. Meas.
19
,
377
(
1970
).
25.
H.
Nakamura
,
A.
Shimoda
,
T.
Waki
,
Y.
Tabata
, and
C.
Mény
,
J. Phys.: Condens. Matter
28
,
346002
(
2016
).
26.
H.
Nakamura
,
T.
Waki
,
Y.
Tabata
, and
C.
Mény
,
J. Phys. Mater.
2
,
015007
(
2019
).
27.
Y.
Kobayashi
,
E.
Oda
,
T.
Nishiuchi
, and
T.
Nakagawa
,
J. Ceram. Soc. Jpn.
119
,
285
(
2011
).
28.
A.
Morel
,
J. M.
Le Breton
,
J.
Kreisel
,
G.
Wiesinger
,
F.
Kools
, and
P.
Tenaud
,
J. Magn. Magn. Mater.
242–245
,
1405
(
2002
).
29.
G.
Wiesinger
,
M.
Müller
,
R.
Grössinger
,
M.
Pieper
,
A.
Morel
,
F.
Kools
,
P.
Tenaud
,
J. M.
Le Breton
, and
J.
Kreisel
,
Phys. Status Solidi A
189
,
499
(
2002
).
30.
V. A.
Markel
,
J. Opt. Soc. Am. A
33
,
1244
(
2016
).
31.
R. L.
Moore
,
AIP Adv.
9
,
035107
(
2019
).
32.
T. L.
Gilbert
,
IEEE Trans. Mag.
40
,
3443
(
2004
).
33.
R. F.
Soohoo
,
Microwave Magnetics
(
Harper & Row Publishers
,
New York
,
1985
), p.
165
.
34.
C. P.
Neo
,
Y.
Yang
, and
J.
Ding
,
J. Appl. Phys.
107
,
083906
(
2010
).

Supplementary Material

You do not currently have access to this content.