Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.

1.
G.
Thomas
,
Nature
389
(
6654
),
907
908
(
1997
).
2.
K.
Nomura
,
H.
Ohta
,
K.
Ueda
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Science
300
(
5623
),
1269
1272
(
2003
).
3.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
(
7016
),
488
492
(
2004
).
4.
K.
Ellmer
,
Nat. Photonics
6
(
12
),
809
817
(
2012
).
5.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
,
Nat. Mater.
15
,
383
(
2016
).
6.
J.
Zhang
,
J.
Willis
,
Z.
Yang
,
X.
Lian
,
W.
Chen
,
L.-S.
Wang
,
X.
Xu
,
T.-L.
Lee
,
L.
Chen
,
D. O.
Scanlon
, and
K. H. L.
Zhang
,
Cell Rep. Phys. Sci.
3
(
3
),
100801
(
2022
).
7.
I.
Hamberg
and
C. G.
Granqvist
,
J. Appl. Phys.
60
(
11
),
R123
R160
(
1986
).
8.
Z.
Wang
,
P. K.
Nayak
,
J. A.
Caraveo-Frescas
, and
H. N.
Alshareef
,
Adv. Mater.
28
(
20
),
3831
3892
(
2016
).
9.
K. H. L.
Zhang
,
K.
Xi
,
M. G.
Blamire
, and
R. G.
Egdell
,
J. Phys.: Condens. Matter
28
(
38
),
383002
(
2016
).
10.
R. A.
El-Mallawany
,
Tellurite Glasses Handbook: Physical Properties and Data
(
CRC Press
,
Florida
,
2014
).
11.
I. C.
Chang
,
Appl. Phys. Lett.
25
(
7
),
370
372
(
1974
).
12.
I.
Chang
,
Opt. Eng.
20
(
6
),
206824
(
1981
).
13.
V. B.
Voloshinov
,
K. B.
Yushkov
, and
B. B.
Linde
,
J. Opt. A: Pure Appl. Opt.
9
(
4
),
341
(
2007
).
14.
A.
Zavabeti
,
P.
Aukarasereenont
,
H.
Tuohey
,
N.
Syed
,
A.
Jannat
,
A.
Elbourne
,
K. A.
Messalea
,
B. Y.
Zhang
,
B. J.
Murdoch
, and
J. G.
Partridge
,
Nat. Electron.
4
(
4
),
277
283
(
2021
).
15.
R. K.
Biswas
and
S. K.
Pati
,
Mater. Res. Bull.
141
,
111343
(
2021
).
16.
L.
Dong
,
P.
Li
,
Y.
Zhao
,
Y.
Miao
,
B.
Peng
,
B.
Xin
, and
W.
Liu
,
Appl. Surf. Sci.
602
,
154382
(
2022
).
17.
S.
Guo
,
H.
Qu
,
W.
Zhou
,
S. A.
Yang
,
Y. S.
Ang
,
J.
Lu
,
H.
Zeng
, and
S.
Zhang
,
Phys. Rev. Appl.
17
(
6
),
064010
(
2022
).
18.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
19.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
(
10
),
5048
5079
(
1981
).
20.
T.
Sekiya
,
N.
Mochida
,
A.
Ohtsuka
, and
M.
Tonokawa
,
J. Ceram. Soc. Jpn.
97
(
1132
),
1435
1440
(
1989
).
21.
J. C.
Champarnaud-Mesjard
,
S.
Blanchandin
,
P.
Thomas
,
A.
Mirgorodsky
,
T.
Merle-Méjean
, and
B.
Frit
,
J. Phys. Chem. Solids
61
(
9
),
1499
1507
(
2000
).
22.
A. P.
Mirgorodsky
,
T.
Merle-Méjean
,
J. C.
Champarnaud
,
P.
Thomas
, and
B.
Frit
,
J. Phys. Chem. Solids
61
(
4
),
501
509
(
2000
).
23.
W.
Zhou
and
N.
Umezawa
,
Phys. Chem. Chem. Phys.
17
(
27
),
17816
17820
(
2015
).
24.
T.
Daeneke
,
P.
Atkin
,
R.
Orrell-Trigg
,
A.
Zavabeti
,
T.
Ahmed
,
S.
Walia
,
M.
Liu
,
Y.
Tachibana
,
M.
Javaid
,
A. D.
Greentree
,
S. P.
Russo
,
R. B.
Kaner
, and
K.
Kalantar-Zadeh
,
ACS Nano
11
(
11
),
10974
10983
(
2017
).
25.
M.
Singh
,
E. D.
Gaspera
,
T.
Ahmed
,
S.
Walia
,
R.
Ramanathan
,
J.
van Embden
,
E.
Mayes
, and
V.
Bansal
,
2D Mater.
4
(
2
),
025110
(
2017
).
26.
Y.
Hu
,
D.
Schlom
,
S.
Datta
, and
K.
Cho
,
ACS Appl. Mater. Interfaces
14
,
25670
25679
(
2022
).
27.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
(
1
),
1
155
(
1985
).
28.
D. J.
Payne
,
R. G.
Egdell
,
A.
Walsh
,
G. W.
Watson
,
J.
Guo
,
P. A.
Glans
,
T.
Learmonth
, and
K. E.
Smith
,
Phys. Rev. Lett.
96
(
15
),
157403
(
2006
).
29.
A.
Walsh
,
D. J.
Payne
,
R. G.
Egdell
, and
G. W.
Watson
,
Chem. Soc. Rev.
40
(
9
),
4455
(
2011
).
30.
J.
Shi
,
J.
Zhang
,
L.
Yang
,
M.
Qu
,
D. C.
Qi
, and
K. H. L.
Zhang
,
Adv. Mater.
33
,
e2006230
(
2021
).
31.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
(
1
),
011315
(
2022
).
32.
H.
Kawazoe
,
M.
Yasukawa
,
H.
Hyodo
,
M.
Kurita
,
H.
Yanagi
, and
H.
Hosono
,
Nature
389
(
6654
),
939
942
(
1997
).
33.
R.
Nagarajan
,
A. D.
Draeseke
,
A. W.
Sleight
, and
J.
Tate
,
J. Appl. Phys.
89
(
12
),
8022
8025
(
2001
).
34.
H.
Yanagi
,
T.
Hase
,
S.
Ibuki
,
K.
Ueda
, and
H.
Hosono
,
Appl. Phys. Lett.
78
(
11
),
1583
1585
(
2001
).
35.
X. C.
Huang
,
J. Y.
Zhang
,
M.
Wu
,
S.
Zhang
,
H. Y.
Xiao
,
W. Q.
Han
,
T. L.
Lee
,
A.
Tadich
,
D. C.
Qi
,
L.
Qiao
,
L.
Chen
, and
K. H. L.
Zhang
,
Phys. Rev. B
100
(
11
),
115301
(
2019
).
36.
M. J.
Wahila
,
Z. W.
Lebens-Higgins
,
A. J.
Jackson
,
D. O.
Scanlon
,
T.-L.
Lee
,
J.
Zhang
,
K. H. L.
Zhang
, and
L. F. J.
Piper
,
Phys. Rev. B
100
(
8
),
085126
(
2019
).
37.
K. H. L.
Zhang
,
Y.
Du
,
A.
Papadogianni
,
O.
Bierwagen
,
S.
Sallis
,
L. F. J.
Piper
,
M. E.
Bowden
,
V.
Shutthanandan
,
P. V.
Sushko
, and
S. A.
Chambers
,
Adv. Mater.
27
(
35
),
5191
5195
(
2015
).
38.
S. A.
Miller
,
P.
Gorai
,
U.
Aydemir
,
T. O.
Mason
,
V.
Stevanović
,
E. S.
Toberer
, and
G. J.
Snyder
,
J. Mater. Chem. C
5
(
34
),
8854
8861
(
2017
).
39.
M.
Minohara
,
A.
Samizo
,
N.
Kikuchi
,
K. K.
Bando
,
Y.
Yoshida
, and
Y.
Aiura
,
J. Phys. Chem. C
124
(
2
),
1755
1760
(
2020
).
40.
M.
Minohara
,
I.
Hase
, and
Y.
Aiura
,
J. Phys. Chem. Lett.
13
(
5
),
1165
1171
(
2022
).

Supplementary Material

You do not currently have access to this content.