We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250–300 MHz with input saturation powers up to −95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimation of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Finally, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.

1.
A.
Wallraff
,
D.
Schuster
,
A.
Blais
,
L.
Frunzio
,
J.
Majer
,
M.
Devoret
,
S.
Girvin
, and
R.
Schoelkopf
, “
Approaching unit visibility for control of a superconducting qubit with dispersive readout
,”
Phys. Rev. Lett.
95
,
060501
(
2005
).
2.
D.
Sank
,
Z.
Chen
,
M.
Khezri
,
J.
Kelly
,
R.
Barends
,
B.
Campbell
,
Y.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
A.
Fowler
 et al, “
Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approximation
,”
Phys. Re. Let.
117
,
190503
(
2016
).
3.
R.
Vijay
,
D.
Slichter
, and
I.
Siddiqi
, “
Observation of quantum jumps in a superconducting artificial atom
,”
Phys. Rev. Lett.
106
,
110502
(
2011
).
4.
N.
Roch
,
E.
Flurin
,
F.
Nguyen
,
P.
Morfin
,
P.
Campagne-Ibarcq
,
M. H.
Devoret
, and
B.
Huard
, “
Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit
,”
Phys. Rev. Lett.
108
,
147701
(
2012
).
5.
J.
Mutus
,
T.
White
,
E.
Jeffrey
,
D.
Sank
,
R.
Barends
,
J.
Bochmann
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
 et al, “
Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line
,”
Appl. Phys. Lett.
103
,
122602
(
2013
).
6.
J.
Aumentado
, “
Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers
,”
IEEE Microwave Mag.
21
,
45
59
(
2020
).
7.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G.
Brandao
,
D. A.
Buell
 et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
8.
J.
Mutus
,
T.
White
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J.
Kelly
 et al, “
Strong environmental coupling in a Josephson parametric amplifier
,”
Appl. Phys. Lett.
104
,
263513
(
2014
).
9.
T.
Roy
,
S.
Kundu
,
M.
Chand
,
A.
Vadiraj
,
A.
Ranadive
,
N.
Nehra
,
M. P.
Patankar
,
J.
Aumentado
,
A.
Clerk
, and
R.
Vijay
, “
Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
,”
Appl. Phys. Lett.
107
,
262601
(
2015
).
10.
P.
Duan
,
Z.
Jia
,
C.
Zhang
,
L.
Du
,
H.
Tao
,
X.
Yang
,
L.
Guo
,
Y.
Chen
,
H.
Zhang
,
Z.
Peng
 et al, “
Broadband flux-pumped Josephson parametric amplifier with an on-chip coplanar waveguide impedance transformer
,”
Appl. Phys. Express
14
,
042011
(
2021
).
11.
O.
Naaman
and
J.
Aumentado
, “
Synthesis of parametrically coupled networks
,”
PRX Quantum
3
,
020201
(
2022
).
12.
N.
Frattini
,
V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M.
Devoret
, “
Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic range
,”
Phys. Rev. Appl.
10
,
054020
(
2018
).
13.
O.
Naaman
,
D. G.
Ferguson
,
A.
Marakov
,
M.
Khalil
,
W. F.
Koehl
, and
R. J.
Epstein
, “
High saturation power Josephson parametric amplifier with GHz bandwidth
,” in
2019 IEEE MTT-S International Microwave Symposium (IMS)
(
IEEE
,
2019
), pp.
259
262
.
14.
C.
Macklin
,
K.
O'brien
,
D.
Hover
,
M.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
,
W.
Oliver
, and
I.
Siddiqi
, “
A near–quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
,
307
310
(
2015
).
15.
K.
O'Brien
,
C.
Macklin
,
I.
Siddiqi
, and
X.
Zhang
, “
Resonant phase matching of Josephson junction traveling wave parametric amplifiers
,”
Phys. Rev. Lett.
113
,
157001
(
2014
).
16.
C.
Bockstiegel
,
J.
Gao
,
M.
Vissers
,
M.
Sandberg
,
S.
Chaudhuri
,
A.
Sanders
,
L.
Vale
,
K.
Irwin
, and
D.
Pappas
, “
Development of a broadband NbTiN traveling wave parametric amplifier for MKID readout
,”
J. Low. Temp. Phys.
176
,
476
477
(
2014
).
17.
B. H.
Eom
,
P. K.
Day
,
H. G.
LeDuc
, and
J.
Zmuidzinas
, “
A wideband, low-noise superconducting amplifier with high dynamic range
,”
Nat. Phys.
8
,
623
627
(
2012
).
18.
M.
Esposito
,
A.
Ranadive
,
L.
Planat
, and
N.
Roch
, “
Perspective on traveling wave microwave parametric amplifiers
,”
Appl. Phys. Lett.
119
,
120501
(
2021
).
19.
K.
Peng
,
M.
Naghiloo
,
J.
Wang
,
G. D.
Cunningham
,
Y.
Ye
, and
K. P.
O'Brien
, “
Floquet-mode traveling-wave parametric amplifiers
,”
PRX Quantum
3
,
020306
(
2022
).
20.
R.
Barends
,
J.
Kelly
,
A.
Megrant
,
A.
Veitia
,
D.
Sank
,
E.
Jeffrey
,
T.
White
,
J.
Mutus
,
A.
Fowler
,
B.
Campbell
 et al, “
Superconducting quantum circuits at the surface code threshold for fault tolerance
,”
Nature
508
,
500
503
(
2014
).
21.
E.
Jeffrey
,
D.
Sank
,
J.
Mutus
,
T.
White
,
J.
Kelly
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
 et al, “
Fast accurate state measurement with superconducting qubits
,”
Phys. Rev. Lett.
112
,
190504
(
2014
).
22.
O.
Naaman
,
J.
Strong
,
D.
Ferguson
,
J.
Egan
,
N.
Bailey
, and
R.
Hinkey
, “
Josephson junction microwave modulators for qubit control
,”
J. Appl. Phys.
121
,
073904
(
2017
).
23.
J.
Grebel
,
A.
Bienfait
,
É.
Dumur
,
H.-S.
Chang
,
M.-H.
Chou
,
C.
Conner
,
G.
Peairs
,
R.
Povey
,
Y.
Zhong
, and
A.
Cleland
, “
Flux-pumped impedance-engineered broadband Josephson parametric amplifier
,”
Appl. Phys. Lett.
118
,
142601
(
2021
).
24.
L.
Ranzani
,
G.
Ribeill
,
B.
Hassick
, and
K. C.
Fong
, “
Wideband Josephson parametric amplifier with integrated transmission line transformer
,” preprint arXiv:2208.02331 (
2022
).
25.
D. I.
Schuster
,
A. A.
Houck
,
J. A.
Schreier
,
A.
Wallraff
,
J. M.
Gambetta
,
A.
Blais
,
L.
Frunzio
,
J.
Majer
,
B.
Johnson
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Resolving photon number states in a superconducting circuit
,”
Nature
445
,
515
518
(
2007
).
26.
R.
Vijay
,
C.
Macklin
,
D.
Slichter
,
S.
Weber
,
K.
Murch
,
R.
Naik
,
A. N.
Korotkov
, and
I.
Siddiqi
, “
Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback
,”
Nature
490
,
77
80
(
2012
).
27.
C. C.
Bultink
,
B.
Tarasinski
,
N.
Haandbæk
,
S.
Poletto
,
N.
Haider
,
D.
Michalak
,
A.
Bruno
, and
L.
DiCarlo
, “
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
,”
Appl. Phys. Lett.
112
,
092601
(
2018
).
28.
H.
Wang
,
S.
Singh
,
C.
McRae
,
J.
Bardin
,
S.
Lin
,
N.
Messaoudi
,
A.
Castelli
,
Y.
Rosen
,
E.
Holland
,
D.
Pappas
 et al, “
Cryogenic single-port calibration for superconducting microwave resonator measurements
,”
Quantum Sci. Technol.
6
,
035015
(
2021
).
29.
J.
Bylander
,
S.
Gustavsson
,
F.
Yan
,
F.
Yoshihara
,
K.
Harrabi
,
G.
Fitch
,
D. G.
Cory
,
Y.
Nakamura
,
J.-S.
Tsai
, and
W. D.
Oliver
, “
Noise spectroscopy through dynamical decoupling with a superconducting flux qubit
,”
Nat. Phys.
7
,
565
570
(
2011
).

Supplementary Material

You do not currently have access to this content.