Ambipolar materials offer a unique and simple route toward cost-effective complementary thin film circuits. SnO is one of the few metal oxide semiconductors that demonstrates ambipolar behavior. In this work, we demonstrated an ambipolar SnO inverter with record high inverter gain and corroborated our experimental results with a comprehensive analytical model. First, we developed ambipolar SnO thin film transistors (TFTs) with symmetric p-type and n-type conduction. Using these ambipolar SnO TFTs, we fabricated ambipolar SnO inverters. Our ambipolar SnO inverter shows a record gain of 432 (V/V), which is the highest reported among all ambipolar material systems. To understand our high inverter gain, we developed a comprehensive analytical model to analyze the transition region of an ambipolar inverter. Our analytical model showed an excellent match with our experiment results. Furthermore, our analytical model shows that to achieve a high inverter gain and a voltage transition point in the middle of the supply voltage range, we must minimize channel length modulation and match the p- and n-type behaviors of the ambipolar TFTs. By expanding our understanding of ambipolar inverter behavior, this work highlights the possibilities of ambipolar SnO TFTs for future high performance complementary thin film circuits.

1.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
2.
H.
Ohara
,
T.
Sasaki
,
K.
Noda
,
S.
Ito
,
M.
Sasaki
,
Y.
Toyosumi
,
Y.
Endo
,
S.
Yoshitomi
,
J.
Sakata
,
T.
Serikawa
, and
S.
Yamazaki
,
SID Symp. Dig.
40
,
284
(
2009
).
3.
J.
Lee
,
D.
Kim
,
D.
Yang
,
S.
Hong
,
K.
Yoon
,
P.
Hong
,
C.
Jeong
,
H.
Park
,
S. Y.
Kim
,
S. K.
Lim
,
S. S.
Kim
,
K.
Son
,
T.
Kim
,
J.
Kwon
, and
S.
Lee
,
SID Symp. Dig.
39
,
625
(
2008
).
4.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
5.
Y.
Son
,
B.
Frost
,
Y.
Zhao
, and
R. L.
Peterson
,
Nat. Electron.
2
,
540
(
2019
).
6.
Z.
Wang
,
P. K.
Nayak
,
J. A.
Caraveo-Frescas
, and
H. N.
Alshareef
,
Adv. Mater.
28
,
3831
(
2016
).
7.
M. P.
Hung
,
J.
Genoe
,
P.
Heremans
, and
S.
Steudel
,
Appl. Phys. Lett.
112
,
263502
(
2018
).
8.
W.
Choi
,
D.
Yin
,
S.
Choo
,
S.-H.
Jeong
,
H.-J.
Kwon
,
Y.
Yoon
, and
S.
Kim
,
Appl. Phys. Lett.
115
,
033501
(
2019
).
9.
A. W.
Lee
,
Y.
Zhang
,
C.
Huang
,
K.
Matsuzaki
, and
K.
Nomura
,
Adv. Electron. Mater.
6
,
2000742
(
2020
).
10.
H.
Luo
,
L.
Liang
,
H.
Cao
,
M.
Dai
,
Y.
Lu
, and
M.
Wang
,
ACS Appl. Mater. Interfaces
7
,
17023
(
2015
).
11.
Y.
Li
,
J.
Yang
,
Y.
Qu
,
J.
Zhang
,
L.
Zhou
,
Z.
Yang
,
Z.
Lin
,
Q.
Wang
,
A.
Song
, and
Q.
Xin
,
Appl. Phys. Lett.
112
,
182102
(
2018
).
12.
C.-H.
Huang
,
Y.
Zhang
, and
K.
Nomura
,
ACS Appl. Mater. Interfaces
14
,
22252
(
2022
).
13.
W.
Hu
,
Z.
Sheng
,
X.
Hou
,
H.
Chen
,
Z.
Zhang
,
D. W.
Zhang
, and
P.
Zhou
,
Small Methods
5
,
2000837
(
2021
).
14.
Y.
Wang
,
J.
Pang
,
Q.
Cheng
,
L.
Han
,
Y.
Li
,
X.
Meng
,
B.
Ibarlucea
,
H.
Zhao
,
F.
Yang
,
H.
Liu
,
H.
Liu
,
W.
Zhou
,
X.
Wang
,
M. H.
Rummeli
,
Y.
Zhang
, and
G.
Cuniberti
,
Nano-Micro Lett.
13
,
143
(
2021
).
15.
L. Y.
Liang
,
H. T.
Cao
,
X. B.
Chen
,
Z. M.
Liu
,
F.
Zhuge
,
H.
Luo
,
J.
Li
,
Y. C.
Lu
, and
W.
Lu
,
Appl. Phys. Lett.
100
,
263502
(
2012
).
16.
C. R.
Allemang
and
R. L.
Peterson
,
IEEE Electron Device Lett.
40
,
1120
(
2019
).
17.
K.
Mashooq
,
J.
Jo
, and
R. L.
Peterson
,
IEEE Trans. Electron Devices
69
,
2436
(
2022
).
18.
J. B.
Varley
,
A.
Schleife
,
A.
Janotti
, and
C. G.
van de Walle
,
Appl. Phys. Lett.
103
,
082118
(
2013
).
19.
T.
Kim
,
M. J.
Kim
,
H.
Lee
,
H.
Xu
,
C. H.
Choi
,
J.-K.
Kim
, and
J. K.
Jeong
,
IEEE Trans. Electron Devices
68
,
4467
(
2021
).
20.
A. W.
Lee
,
D.
Le
,
K.
Matsuzaki
, and
K.
Nomura
,
ACS Appl. Electron. Mater.
2
,
1162
(
2020
).
21.
D. B.
Granato
,
A.
Albar
, and
U.
Schwingenschlögl
,
EPL
106
,
16001
(
2014
).
22.
M. S.
Kang
and
C. D.
Frisbie
,
ChemPhysChem
14
,
1547
(
2013
).
23.
A.
Risteska
,
K.-Y.
Chan
,
T. D.
Anthopoulos
,
A.
Gordijn
,
H.
Stiebig
,
M.
Nakamura
, and
D.
Knipp
,
Organic Electron.
13
,
2816
(
2012
).
24.
S. M.
GadelRab
and
S. G.
Chamberlain
, in
Proceedings of Second International Workshop on Active Matrix Liquid Crystal Displays
(
IEEE
,
Bethlehem, PA, USA
,
1995
), pp.
29
32
.
25.
W.
Bae
,
J. Low Power Electron. Appl.
9
,
26
(
2019
).
26.
J. M.
Rabaey
,
A.
Chandrakasan
, and
B.
Nikolic
,
Digital Integrated Circuits: A Design Perspective
, 2nd ed. (
Pearson Education
,
Upper Saddle River, NJ
,
2003
).
27.
S.-M.
Hsu
,
D.-Y.
Su
,
F.-Y.
Tsai
,
J.-Z.
Chen
, and
I.-C.
Cheng
,
IEEE Trans. Electron Devices
68
,
1070
(
2021
).
28.
T. D.
Ngo
,
Z.
Yang
,
M.
Lee
,
F.
Ali
,
I.
Moon
,
D. G.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
K.-Y.
Lee
, and
W. J.
Yoo
,
Adv. Electron. Mater.
7
,
2001212
(
2021
).
29.
W.-J.
Zeng
,
X.-Y.
Zhou
,
X.-J.
Pan
,
C.-L.
Song
, and
H.-L.
Zhang
,
AIP Adv.
3
,
012101
(
2013
).
30.
S.
Kumagai
,
H.
Murakami
,
K.
Tsuzuku
,
T.
Makita
,
C.
Mitsui
,
T.
Okamoto
,
S.
Watanabe
, and
J.
Takeya
,
Organic Electron.
48
,
127
(
2017
).

Supplementary Material

You do not currently have access to this content.