It is well accepted that close assembly between a fuel and an oxidizer can increase the interfacial contact-area and reduce the diffusion distances, which can significantly promote a heterogeneous reaction. However, we recently observed for nanocomposites of Al/PVDF (aluminum/polyvinylidene fluoride), that if we separated some of the PVDF to form a laminated structure, the flame propagation rate is significantly increased compared to the homogenous case. To probe the mechanism behind this, we used functionalized aluminum nanoparticles to create microsized aggregates of Al-rich and PVDF-rich regions to induce the inhomogeneity and also fabricated Al/PVDF laminate structure films to control the inhomogeneity systematically. The result demonstrates that the inhomogeneous mixing between Al and PVDF can significantly increase the flame front corrugation (burning area). This presumably occurs due to variations in the microburn rate (local burn velocity vectors at the flame front on the microscale). The benefit of the enhanced flame area can apparently overcome the effects of the decrease in the contact area, leading to enhanced burning for an inhomogeneously mixed system. Finally, fluorocarbon functionalization of Al particles can further increase the microburn rate.

1.
R. A.
Yetter
,
G. A.
Risha
, and
S. F.
Son
, “
Metal particle combustion and nanotechnology
,”
Proc. Combust. Inst.
32
(
2
),
1819
1838
(
2009
).
2.
C. E.
Aumann
,
G. L.
Skofronick
, and
J. A.
Martin
, “
Oxidation behavior of aluminum nanopowders
,”
J. Vac. Sci. Technol. B
13
(
3
),
1178
1183
(
1995
).
3.
G.
Young
,
K.
Sullivan
,
M. R.
Zachariah
, and
K.
Yu
, “
Combustion characteristics of boron nanoparticles
,”
Combust. Flame
156
(
2
),
322
333
(
2009
).
4.
E. L.
Dreizin
, “
Metal-based reactive nanomaterials
,”
Prog. Energy Combust. Sci.
35
(
2
),
141
167
(
2009
).
5.
X.
Li
,
P.
Guerieri
,
W.
Zhou
,
C.
Huang
, and
M. R.
Zachariah
, “
Direct deposit laminate nanocomposites with enhanced propellent properties
,”
ACS Appl. Mater. Interfaces
7
(
17
),
9103
9109
(
2015
).
6.
Y.
Jiang
,
Y.
Wang
,
J.
Baek
 et al, “
Ignition and combustion of perfluoroalkyl-functionalized aluminum nanoparticles and nanothermite
,”
Combust. Flame
242
,
112170
(
2022
).
7.
J.
Baek
,
Y.
Jiang
,
A. R.
Demko
 et al, “
Effect of fluoroalkylsilane surface functionalization on boron combustion
,”
ACS Appl. Mater. Interfaces
14
,
20190
(
2022
).
8.
J.
Shen
,
H.
Wang
,
D. J.
Kline
 et al, “
Combustion of 3D printed 90 wt. % loading reinforced nanothermite
,”
Combust. Flame
215
,
86
92
(
2020
).
9.
D. J.
Kline
,
M. C.
Rehwoldt
,
H.
Wang
,
N. E.
Eckman
, and
M. R.
Zachariah
, “
Why does adding a poor thermal conductor increase propagation rate in solid propellants?
,”
Appl. Phys. Lett.
115
(
11
),
114101
(
2019
).
10.
R. J.
Jacob
,
D. J.
Kline
, and
M. R.
Zachariah
, “
High speed 2-dimensional temperature measurements of nanothermite composites: Probing thermal vs. gas generation effects
,”
J. Appl. Phys.
123
(
11
),
115902
(
2018
).
11.
D. J.
Kline
,
M. C.
Rehwoldt
,
J. B.
DeLisio
 et al, “
In-operando thermophysical properties and kinetics measurements of Al-Zr-C composites
,”
Combust. Flame
228
,
250
258
(
2021
).
12.
H.
Wang
,
D. J.
Kline
,
M. C.
Rehwoldt
, and
M. R.
Zachariah
, “
Carbon fibers enhance the propagation of high loading nanothermites: In situ observation of microscopic combustion
,”
ACS Appl. Mater. Interfaces
13
,
30504
(
2021
).
13.
S.
Deng
,
Y.
Jiang
,
S.
Huang
,
X.
Shi
,
J.
Zhao
, and
X.
Zheng
, “
Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches
,”
Combust. Flame
195
,
303
310
(
2018
).
14.
S.
Huang
,
S.
Deng
,
Y.
Jiang
, and
X.
Zheng
, “
Experimental effective metal oxides to enhance boron combustion
,”
Combust. Flame
205
,
278
285
(
2019
).
15.
H.
Wang
,
P.
Biswas
, and
M. R.
Zachariah
, “
Direct imaging and simulation of the interface reaction of metal/metal oxide nanoparticle laminates
,”
J. Phys. Chem. C
126
,
8684
(
2022
).

Supplementary Material

You do not currently have access to this content.