We investigate a band structure ω(k) of a photonic time crystal with periodic square (step) modulation in time of its permittivity ε(t), oscillating between the value ε1 (sustained for a fraction of time τ of the period) and the value ε2 [fraction (1 − τ)]. The strength of modulation is m=(ε1ε2)/(ε1+ε2). We find that ω(k) can be periodic in a wave number k (in addition to the frequency ω), provided that a certain function f(m,τ) of the parameters m and τ is an irreducible rational number. However, even for arbitrary values of m and τ, f(m,τ) can be approximated by a fractional number to any desired degree of periodicity. Hence, for square modulation, a photonic band structure is necessarily periodic or quasi-periodic in the wave number. Moreover, for appropriate sets of the parameters m and τ, the modes associated with k values within the band gaps can have identical values of the imaginary part of ω. For simultaneous excitation of these modes, all the fields would grow in time at the same rate, resulting in powerful amplification.

1.
P. A.
Sturrock
, “
Kinematics of growing waves
,”
Phys. Rev.
112
,
1488
(
1958
).
2.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Addison-Wesley
,
1959
).
3.
Y. B.
Fainberg
,
V. I.
Kurilko
, and
V. D.
Shapiro
, “
Instabilities in the interaction of charged particle beams with plasmas
,”
Sov. Phys. Tech. Phys.
6
,
459
(
1961
).
4.
R. J.
Briggs
,
Electron-Stream Interaction With Plasmas
(
MIT Press
,
1964
).
5.
A. L.
Cullen
, “
A travelling-wave parametric amplifier
,”
Nature
181
,
332
(
1958
).
6.
P. K.
Tien
, “
Parametric amplification and frequency mixing in propagating circuits
,”
J. Appl. Phys.
29
,
1347
(
1958
).
7.
E. S.
Cassedy
, “
Dispersion relations in time-space periodic media Part II—Unstable interactions
,”
Proc. IEEE
55
,
1154
(
1967
).
8.
R. H.
Kingston
, “
Parametric amplification and oscillation at optical frequencies
,”
Proc. IRE
50
,
472
(
1962
).
9.
N. M.
Kroll
, “
Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies
,”
Proc. IRE
51
,
110
(
1963
).
10.
J. A.
Giordmaine
and
R. C.
Miller
, “
Tunable coherent parametric oscillation in LiNbO3 at optical frequencies
,”
Phys. Rev. Lett.
14
,
973
(
1965
).
11.
N.
Bloembergen
,
Nonlinear Optics
(
W. A. Benjamin
,
1965
).
12.
A.
Yariv
, “
Parametric interactions of optical modes
,”
IEEE J. Quantum. Electron.
2
,
30
(
1966
).
13.
M.
Lyubarov
,
Y.
Lumer
,
A.
Dikopoltsev
,
E.
Lustig
,
Y.
Sharabi
, and
M.
Segev
, “
Amplified emission and lasing in photonic time crystals
,”
Science
377
,
425
(
2022
).
14.
D. E.
Holberg
and
K. S.
Kunz
, “
Parametric properties of fields in a slab of time-varying permittivity
,”
IEEE Trans. Antennas Propag.
14
,
183
(
1966
).
15.
N.
Wang
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Photonic Floquet media with a complex time-periodic permittivity
,”
Phys. Rev. B
98
,
085142
(
2018
).
16.
M.
Chengnizadeh
,
K.
Mehranry
, and
M.
Memarian
, “
General solution to wave propagation in media undergoing arbitrary transient or periodic temporal variations of permittivity
,”
J. Opt. Soc. Am. B
35
,
2923
(
2018
).
17.
H.
Li
,
S.
Yin
,
E.
Galiffi
, and
A.
Alú
, “
Temporal parity-time symmetry for extreme energy transformations
,”
Phys. Rev. Lett.
127
,
153903
(
2021
).
18.
A. M.
Shaltout
,
J.
Fang
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Photonic time-crystal and momentum band-gaps
,” in
Conference on Lasers and Electro-Optics, OSA Technical Digest
(
Optical Society of America
,
2016
).
19.
E.
Lustig
,
Y.
Sharabi
, and
M.
Segev
, “
Topological aspects of photonic time crystals
,”
Optica
5
,
1390
(
2018
).
20.
J.
Ma
and
Z.-G.
Wang
, “
Band structure and topological phase transition of photonic time crystals
,”
Opt. Express
27
,
12914
(
2019
).
21.
T. K.
Koutserimpas
, “
Parametric amplification interactions in time-periodic media: Coupled waves theory
,”
J. Opt. Soc. Am. B
39
,
481
(
2022
).
22.
S.
Vezzoli
,
V.
Bruno
,
C.
DeVault
,
T.
Roger
,
V. M.
Shalaev
,
A.
Boltasseva
,
M.
Ferrera
,
M.
Clerici
,
A.
Dubietis
, and
D.
Faccio
, “
Optical time reversal from time-dependent epsilon-near-zero media
,”
Phys. Rev. Lett.
120
,
043902
(
2018
).
23.
A.
Dikopoltsev
,
Y.
Sharabi
,
M.
Lyubarov
,
Y.
Lumer
,
S.
Tsesses
,
E.
Lustig
,
I.
Kaminer
, and
M.
Segev
, “
Light emission by free electrons in photonic time-crystals
,” arXiv:2109.01203 (
2021
).
24.
K.
Sacha
,
Time Crystals
, Springer Series on Atomic, Optical, and Plasma Physics, edited by
G. W. F.
Drake
(
Springer
,
2020
), Vol.
114
.
25.
J. G.
Gaxiola-Luna
and
P.
Halevi
, “
Temporal photonic (time) crystal with a square profile of both permittivity and permeability
,”
Phys. Rev. B
103
,
144306
(
2021
).
You do not currently have access to this content.