The allotrope of carbon, biphenylene, was prepared experimentally recently [Fan et al., Science 372, 852–856 (2021)]. In this Letter, we perform first-principles simulation to understand the bonding nature and structure stability of the possible in-plane heterostructure built by graphene and biphenylene. We found that the graphene–biphenylene in-plane heterostructure only exhibits along the armchair direction, which is connected together by strong covalent bonds and energetically stable. Then, the non-equilibrium molecular dynamics calculations are used to explore the interfacial thermal properties of the graphene/biphenylene heterostructure. It is found that the graphene/biphenylene in-plane heterostructure possesses an excellent interfacial thermal conductance of 2.84 × 109 W·K−1·m−2 at room temperature. Importantly, the interfacial thermal conductance presents different temperature dependence under opposite heat flux direction. This anomalous temperature dependence results in increased thermal rectification ratio with temperature about 40% at 350 K. This work provides comprehensive insight into the graphene–biphenylene heterostructure and suggests a route for designing a thermal rectifier with high efficiency.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
191
(
2007
).
2.
P.
Miro
,
M.
Audiffred
, and
T.
Heine
,
Chem. Soc. Rev.
43
,
6537
6554
(
2014
).
3.
K.
Ren
,
X.
Ma
,
X.
Liu
,
Y.
Xu
,
W.
Huo
,
W.
Li
, and
G.
Zhang
,
Nanoscale
14
,
8463
8473
(
2022
).
4.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
204
(
2005
).
5.
J.
Wang
,
S.
Deng
,
Z.
Liu
, and
Z.
Liu
,
Natl. Sci. Rev.
2
,
22
39
(
2015
).
6.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I.
Grigorieva
,
S.
Dubonos
, and
A.
Firsov
,
Nature
438
,
197
200
(
2005
).
7.
D.
Ghosh
,
I.
Calizo
,
D.
Teweldebrhan
,
E. P.
Pokatilov
,
D. L.
Nika
,
A. A.
Balandin
,
W.
Bao
,
F.
Miao
, and
C. N.
Lau
,
Appl. Phys. Lett.
92
,
151911
(
2008
).
8.
J.
Chen
,
G.
Zhang
, and
B.
Li
,
Nanoscale
5
,
532
536
(
2013
).
9.
G.
Zhang
and
B.
Li
,
J. Chem. Phys
123
,
114714
(
2005
).
10.
X.-F.
Peng
,
X.-J.
Wang
,
Z.-Q.
Gong
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
99
,
233105
(
2011
).
11.
F.
Hao
,
D.
Fang
, and
Z.
Xu
,
Appl. Phys. Lett.
99
,
041901
(
2011
).
12.
F.
Ma
,
H.
Zheng
,
Y.
Sun
,
D.
Yang
,
K.
Xu
, and
P. K.
Chu
,
Appl. Phys. Lett.
101
,
111904
(
2012
).
13.
Z.
Guo
,
D.
Zhang
, and
X.-G.
Gong
,
Appl. Phys. Lett.
95
,
163103
(
2009
).
14.
A. A.
Balandin
,
Nat. Mater.
10
,
569
581
(
2011
).
15.
A.
Ramazani
,
A.
Reihani
,
A.
Soleimani
,
R.
Larson
, and
V.
Sundararaghavan
,
Carbon
123
,
635
644
(
2017
).
16.
U.
Choudhry
,
S.
Yue
, and
B.
Liao
,
Phys. Rev. B
100
,
165401
(
2019
).
17.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
,
aac9439
(
2016
).
18.
B.
Liu
and
K.
Zhou
,
Prog. Mater. Sci.
100
,
99
169
(
2019
).
19.
K.
Ren
,
Z.
Zhu
,
K.
Wang
,
W.
Huo
, and
Z.
Cui
,
Crystals
12
,
425
(
2022
).
20.
K.
Ren
,
M.
Sun
,
Y.
Luo
,
S.
Wang
,
J.
Yu
, and
W.
Tang
,
Appl. Surf. Sci.
476
,
70
75
(
2019
).
21.
M.
Sun
,
J.-P.
Chou
,
Q.
Ren
,
Y.
Zhao
,
J.
Yu
, and
W.
Tang
,
Appl. Phys. Lett.
110
,
173105
(
2017
).
22.
Y.
Cai
,
G.
Zhang
, and
Y.-W.
Zhang
,
J. Phys. Chem. C
119
,
13929
13936
(
2015
).
23.
K.
Ren
,
J.
Yu
, and
W.
Tang
,
J. Appl. Phys.
126
,
065701
(
2019
).
24.
M.
Sun
,
J.-P.
Chou
,
J.
Yu
, and
W.
Tang
,
J. Mater. Chem. C
5
,
10383
10390
(
2017
).
25.
H. V.
Phuc
,
N. N.
Hieu
,
B. D.
Hoi
, and
C. V.
Nguyen
,
Phys. Chem. Chem. Phys.
20
,
17899
17908
(
2018
).
26.
J.
Shi
,
M.
Liu
,
J.
Wen
,
X.
Ren
,
X.
Zhou
,
Q.
Ji
,
D.
Ma
,
Y.
Zhang
,
C.
Jin
,
H.
Chen
,
S.
Deng
,
N.
Xu
,
Z.
Liu
, and
Y.
Zhang
,
Adv. Mater.
27
,
7086
7092
(
2015
).
27.
Q.
Li
,
Z.
Zhao
,
B.
Yan
,
X.
Song
,
Z.
Zhang
,
J.
Li
,
X.
Wu
,
Z.
Bian
,
X.
Zou
,
Y.
Zhang
, and
Z.
Liu
,
Adv. Mater.
29
,
1701325
(
2017
).
28.
T.
Gao
,
X.
Song
,
H.
Du
,
Y.
Nie
,
Y.
Chen
,
Q.
Ji
,
J.
Sun
,
Y.
Yang
,
Y.
Zhang
, and
Z.
Liu
,
Nat. Commun.
6
,
6835
(
2015
).
29.
J.
Fu
,
M.
Hong
,
J.
Shi
,
C.
Xie
,
S.
Jiang
,
Q.
Shang
,
Q.
Zhang
,
Y.
Shi
,
Y.
Huan
,
Z.
Zhang
,
P.
Yang
,
X.
Li
,
L.
Gu
,
Q.
Zhang
,
C.
Shan
, and
Y.
Zhang
,
ACS Appl. Mater. Interfaces
11
,
48221
48229
(
2019
).
30.
K.
Ren
,
H.
Qin
,
H.
Liu
,
Y.
Chen
,
X.
Liu
, and
G.
Zhang
,
Adv. Funct. Mater.
32
,
2110846
(
2022
).
31.
Q.
Fan
,
L.
Yan
,
M. W.
Tripp
,
O.
Krejčí
,
S.
Dimosthenous
,
S. R.
Kachel
,
M.
Chen
,
A. S.
Foster
,
U.
Koert
, and
P.
Liljeroth
,
Science
372
,
852
856
(
2021
).
32.
Y.
Luo
,
C.
Ren
,
Y.
Xu
,
J.
Yu
,
S.
Wang
, and
M.
Sun
,
Sci. Rep.
11
,
19008
(
2021
).
33.
K.
Ren
,
H.
Shu
,
W.
Huo
,
Z.
Cui
, and
Y.
Xu
,
Nanotechnology
33
,
345701
(
2022
).
34.
H. P.
Veeravenkata
and
A.
Jain
,
Carbon
183
,
893
898
(
2021
).
35.
P.
Ying
,
T.
Liang
,
Y.
Du
,
J.
Zhang
,
X.
Zeng
, and
Z.
Zhong
,
Int. J. Heat Mass Transfer
183
,
122060
(
2022
).
36.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
37.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
39.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
40.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
41.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
42.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
43.
A.
Kınacı
,
J. B.
Haskins
,
C.
Sevik
, and
T.
Çağın
,
Phys. Rev. B
86
,
115410
(
2012
).
44.
X.
Liu
,
J.
Gao
,
G.
Zhang
, and
Y. W.
Zhang
,
Nanoscale
10
,
19854
19862
(
2018
).
45.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
,
354
360
(
2006
).
46.
X.
Liu
,
J.
Gao
,
G.
Zhang
, and
Y.-W.
Zhang
,
Nano. Res.
10
,
2944
2953
(
2017
).
47.
J.-W.
Jiang
and
J.-S.
Wang
,
Europhys. Lett.
96
,
16003
(
2011
).
48.
T.
Luo
and
J. R.
Lloyd
,
Adv. Funct. Mater.
22
,
2495
2502
(
2012
).
49.
R.
Mao
,
B.
Kong
,
C.
Gong
,
S.
Xu
,
T.
Jayasekera
,
K.
Cho
, and
K.
Kim
,
Phys. Rev. B
87
,
165410
(
2013
).
50.
B.
Liu
,
J. A.
Baimova
,
C. D.
Reddy
,
A. W.
Law
,
S. V.
Dmitriev
,
H.
Wu
, and
K.
Zhou
,
ACS Appl. Mater. Interfaces
6
,
18180
18188
(
2014
).
51.
Z.-Y.
Ong
and
G.
Zhang
,
Phys. Rev. B
91
,
174302
(
2015
).
52.
K.
Zhou
and
B.
Liu
,
Molecular Dynamics Simulation: Fundamentals and Applications
(
Academic Press
,
2022
).
53.
B.
Liu
,
J. A.
Baimova
,
C. D.
Reddy
,
S. V.
Dmitriev
,
W. K.
Law
,
X. Q.
Feng
, and
K.
Zhou
,
Carbon
79
,
236
244
(
2014
).
54.
J.
Hu
,
X.
Ruan
, and
Y. P.
Chen
,
Nano Lett.
9
,
2730
2735
(
2009
).
55.
G.
Zhang
and
H. S.
Zhang
,
Nanoscale
3
,
4604
4607
(
2011
).

Supplementary Material

You do not currently have access to this content.