Unsuspended phononic integrated circuits have been proposed for on-chip acoustic information processing. Limited by the operation mechanism of a conventional interdigital transducer, the excitation of the quasi-Love mode in GaN-on-sapphire is inefficient, and thus, a high-efficiency Rayleigh-to-Love mode converter is of great significance for future integrated phononic devices. Here, we propose a high-efficiency and robust phononic mode converter based on an adiabatic conversion mechanism. Utilizing the anisotropic elastic property of the substrate, the adiabatic mode converter is realized by a simple tapered phononic waveguide. A conversion efficiency exceeding 96% with a 3dB bandwidth of 1.44GHz can be realized for phononic waveguides working at GHz frequency band, and excellent tolerance to the fabrication errors is also numerically validated. The device that we proposed can be useful in both classical and quantum phononic information processing, and the adiabatic mechanism could be generalized to other phononic device designs.

1.
L.
Reindl
,
C.
Ruppel
,
S.
Berek
,
U.
Knauer
,
M.
Vossiek
,
P.
Heide
, and
L.
Oreans
, “
Design, fabrication, and application of precise SAW delay lines used in an FMCW radar system
,”
IEEE Trans. Microwave Theory Tech.
49
,
787
(
2001
).
2.
C.
Campbell
,
Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set
(
Academic Press
,
1998
).
3.
K.
Länge
,
B. E.
Rapp
, and
M.
Rapp
, “
Surface acoustic wave biosensors: A review
,”
Anal. Bioanal. Chem.
391
,
1509
(
2008
).
4.
B.
Liu
,
X.
Chen
,
H.
Cai
,
M. M.
Ali
,
X.
Tian
,
L.
Tao
,
Y.
Yang
, and
T.
Ren
, “
Surface acoustic wave devices for sensor applications
,”
J. Semicond.
37
,
021001
(
2016
).
5.
M. J. A.
Schuetz
,
E. M.
Kessler
,
G.
Giedke
,
L. M. K.
Vandersypen
,
M. D.
Lukin
, and
J. I.
Cirac
, “
Universal quantum transducers based on surface acoustic waves
,”
Phys. Rev. X
5
,
031031
(
2015
).
6.
H.
Tian
,
J.
Liu
,
B.
Dong
,
J. C.
Skehan
,
M.
Zervas
,
T. J.
Kippenberg
, and
S. A.
Bhave
, “
Hybrid integrated photonics using bulk acoustic resonators
,”
Nat. Commun.
11
,
3073
(
2020
).
7.
C. J.
Sarabalis
,
R.
Van Laer
,
R. N.
Patel
,
Y. D.
Dahmani
,
W.
Jiang
,
F. M.
Mayor
, and
A. H.
Safavi-Naeini
, “
Acousto-optic modulation of a wavelength-scale waveguide
,”
Optica
8
,
477
(
2021
).
8.
C. H. W.
Barnes
,
J. M.
Shilton
, and
A. M.
Robinson
, “
Quantum computation using electrons trapped by surface acoustic waves
,”
Phys. Rev. B
62
,
8410
(
2000
).
9.
S.
Hermelin
,
S.
Takada
,
M.
Yamamoto
,
S.
Tarucha
,
A. D.
Wieck
,
L.
Saminadayar
,
C.
Bäuerle
, and
T.
Meunier
, “
Electrons surfing on a sound wave as a platform for quantum optics with flying electrons
,”
Nature
477
,
435
(
2011
).
10.
W. J. M.
Naber
,
T.
Fujisawa
,
H. W.
Liu
, and
W. G.
Van Der Wiel
, “
Surface-acoustic-wave-induced transport in a double quantum dot
,”
Phys. Rev. Lett.
96
,
136807
(
2006
).
11.
J. R.
Gell
,
M. B.
Ward
,
R. J.
Young
,
R. M.
Stevenson
,
P.
Atkinson
,
D.
Anderson
,
G. A. C.
Jones
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Modulation of single quantum dot energy levels by a surface-acoustic-wave
,”
Appl. Phys. Lett.
93
,
081115
(
2008
).
12.
D. A.
Golter
,
T.
Oo
,
M.
Amezcua
,
K. A.
Stewart
, and
H.
Wang
, “
Optomechanical quantum control of a nitrogen-vacancy center in diamond
,”
Phys. Rev. Lett.
116
,
143602
(
2016
).
13.
D. A.
Golter
,
T.
Oo
,
M.
Amezcua
,
I.
Lekavicius
,
K. A.
Stewart
, and
H.
Wang
, “
Coupling a surface acoustic wave to an electron spin in diamond via a dark state
,”
Phys. Rev. X
6
,
041060
(
2016
).
14.
M. V.
Gustafsson
,
T.
Aref
,
A. F.
Kockum
,
M. K.
Ekström
,
G.
Johansson
, and
P.
Delsing
, “
Propagating phonons coupled to an artificial atom
,”
Science
346
,
207
(
2014
).
15.
R.
Manenti
,
A. F.
Kockum
,
A.
Patterson
,
T.
Behrle
,
J.
Rahamim
,
G.
Tancredi
,
F.
Nori
, and
P. J.
Leek
, “
Circuit quantum acoustodynamics with surface acoustic waves
,”
Nat. Commun.
8
,
975
(
2017
).
16.
Y.
Chu
,
P.
Kharel
,
W. H.
Renninger
,
L. D.
Burkhart
,
L.
Frunzio
,
P. T.
Rakich
, and
R. J.
Schoelkopf
, “
Quantum acoustics with superconducting qubits
,”
Science
358
,
199
(
2017
).
17.
K. J.
Satzinger
,
Y. P.
Zhong
,
H.-S.
Chang
,
G. A.
Peairs
,
A.
Bienfait
,
M.-H.
Chou
,
A. Y.
Cleland
,
C. R.
Conner
,
É.
Dumur
,
J.
Grebel
,
I.
Gutierrez
,
B. H.
November
,
R. G.
Povey
,
S. J.
Whiteley
,
D. D.
Awschalom
,
D. I.
Schuster
, and
A. N.
Cleland
, “
Quantum control of surface acoustic-wave phonons
,”
Nature
563
,
661
(
2018
).
18.
W.
Fu
,
Z.
Shen
,
Y.
Xu
,
C.-L.
Zou
,
R.
Cheng
,
X.
Han
, and
H. X.
Tang
, “
Phononic integrated circuitry and spin-orbit interaction of phonons
,”
Nat. Commun.
10
,
2743
(
2019
).
19.
W.
Wang
,
M.
Shen
,
C.-L.
Zou
,
W.
Fu
,
Z.
Shen
, and
H. X.
Tang
, “
High-acoustic-index-contrast phononic circuits: Numerical modeling
,”
J. Appl. Phys.
128
,
184503
(
2020
).
20.
F. M.
Mayor
,
W.
Jiang
,
C. J.
Sarabalis
,
T. P.
McKenna
,
J. D.
Witmer
, and
A. H.
Safavi-Naeini
, “
Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire
,”
Phys. Rev. Appl.
15
,
014039
(
2021
).
21.
L.
Shao
,
D.
Zhu
,
M.
Colangelo
,
D. H.
Lee
,
N.
Sinclair
,
Y.
Hu
,
P. T.
Rakich
,
K.
Lai
,
K. K.
Berggren
, and
M.
Loncar
, “
Electrical control of surface acoustic waves
,” arXiv:2101.01626 (
2021
).
22.
X.-B.
Xu
,
J.-Q.
Wang
,
Y.-H.
Yang
,
W.
Wang
,
Y.-L.
Zhang
,
B.-Z.
Wang
,
C.-H.
Dong
,
L.
Sun
,
G.-C.
Guo
, and
C.-L.
Zou
, “
High-frequency traveling-wave phononic cavity with sub-micron wavelength
,”
Appl. Phys. Lett.
120
,
163503
(
2022
).
23.
Z.
Shen
,
W.
Fu
,
R.
Cheng
,
H.
Townley
,
C.-L.
Zou
, and
H. X.
Tang
, “
Polarization mode hybridization and conversion in phononic wire waveguides
,”
Appl. Phys. Lett.
115
,
201901
(
2019
).
24.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
, Wiley Series in Pure and Applied Optics (
John Wiley & Sons, Inc
.,
New York, USA
,
1991
).
25.
J.
Pedrós
,
F.
Calle
,
J.
Grajal
,
R. J.
Jiménez Riobóo
,
Y.
Takagaki
,
K. H.
Ploog
, and
Z.
Bougrioua
, “
Anisotropy-induced polarization mixture of surface acoustic waves in GaNc-sapphire heterostructures
,”
Phys. Rev. B
72
,
075306
(
2005
).
26.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
, and
M.
Sipser
, “
Quantum computation by adiabatic evolution
,” arXiv:Quant-ph/0001106 (
2000
).
27.
A. M.
Childs
,
E.
Farhi
, and
J.
Preskill
, “
Robustness of adiabatic quantum computation
,”
Phys. Rev. A
65
,
123221
(
2001
).
28.
B. B.
Zhou
,
A.
Baksic
,
H.
Ribeiro
,
C. G.
Yale
,
F. J.
Heremans
,
P. C.
Jerger
,
A.
Auer
,
G.
Burkard
,
A. A.
Clerk
, and
D. D.
Awschalom
, “
Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system
,”
Nat. Phys.
13
,
330
(
2017
).
29.
X.-B.
Xu
,
L.
Shi
,
G.-C.
Guo
,
C.-H.
Dong
, and
C.-L.
Zou
, “
‘Möbius’ microring resonator
,”
Appl. Phys. Lett.
114
,
101106
(
2019
).
30.
X.-B.
Xu
,
X.
Guo
,
W.
Chen
,
H. X.
Tang
,
C.-H.
Dong
,
G.-C.
Guo
, and
C.-L.
Zou
, “
Flat-top optical filter via the adiabatic evolution of light in an asymmetric coupler
,”
Phys. Rev. A
100
,
023809
(
2019
).
31.
S.-H.
Kim
,
R.
Takei
,
Y.
Shoji
, and
T.
Mizumoto
, “
Single-trench waveguide TE-TM mode converter
,”
Opt. Express
17
,
11267
(
2009
).
32.
D.
Dai
,
Y.
Tang
, and
J. E.
Bowers
, “
Mode conversion in tapered submicron silicon ridge optical waveguides
,”
Opt. Express
20
,
13425
(
2012
).
You do not currently have access to this content.