Through a combination of analytical, numerical, and experimental methods, we study a three-dimensional metamaterial with the ability to attenuate both airborne sound and mechanical vibrations, simultaneously, and in all directions. In addition, due to the auxetic nature of the design (i.e., having a negative Poisson's ratio), the metamaterial can shrink (or expand) in a relatively uniform manner, without buckling. We utilize an external load to cause a systematic shape change in the metamaterial and tune the attenuation frequency bands. The presented design principles can be utilized in many applications related to acoustic and elastic wave manipulation as well as acoustic devices.

1.
O. R.
Bilal
,
R.
Süsstrunk
,
C.
Daraio
, and
S. D.
Huber
, “
Intrinsically polar elastic metamaterials
,”
Adv. Mater.
29
,
1700540
(
2017
).
2.
A.
Palermo
,
P.
Celli
,
B.
Yousefzadeh
,
C.
Daraio
, and
A.
Marzani
, “
Surface wave non-reciprocity via time-modulated metamaterials
,”
J. Mech. Phys. Solids
145
,
104181
(
2020
).
3.
X.
Hou
and
V. V.
Silberschmidt
, “
Metamaterials with negative Poisson's ratio: A review of mechanical properties and deformation mechanisms
,” in
Mechanics of Advanced Materials: Engineering Materials
, edited by
V.
Silberschmidt
and
V.
Matveenko
(Springer, Cham,
2015
).
4.
R.
Graciá-Salgado
,
V. M.
García-Chocano
,
D.
Torrent
, and
J.
Sánchez-Dehesa
, “
Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications
,”
Phys. Rev. B
88
,
224305
(
2013
).
5.
H.
Huang
,
C.
Sun
, and
G.
Huang
, “
On the negative effective mass density in acoustic metamaterials
,”
Int. J. Eng. Sci.
47
,
610
617
(
2009
).
6.
T.
Klatt
and
M. R.
Haberman
, “
A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model
,”
J. Appl. Phys.
114
,
033503
(
2013
).
7.
J.
Li
,
X.
Wen
, and
P.
Sheng
, “
Acoustic metamaterials
,”
J. Appl. Phys.
129
,
171103
(
2021
).
8.
Y.
Wang
and
R.
Lakes
, “
Composites with inclusions of negative bulk modulus: Extreme damping and negative Poisson's ratio
,”
J. Compos. Mater.
39
,
1645
1657
(
2005
).
9.
W.
Yang
,
Z.-M.
Li
,
W.
Shi
,
B.-H.
Xie
, and
M.-B.
Yang
, “
Review on auxetic materials
,”
J. Mater. Sci.
39
,
3269
3279
(
2004
).
10.
K. E.
Evans
and
A.
Alderson
, “
Auxetic materials: Functional materials and structures from lateral thinking!
,”
Adv. Mater.
12
,
617
628
(
2000
).
11.
A.
Bezazi
,
W.
Boukharouba
, and
F.
Scarpa
, “
Mechanical properties of auxetic carbon/epoxy composites: Static and cyclic fatigue behaviour
,”
Phys. Status Solidi (B)
246
,
2102
2110
(
2009
).
12.
Q.
Chen
and
N. M.
Pugno
, “
In-plane elastic buckling of hierarchical honeycomb materials
,”
Eur. J. Mech.-A/Solids
34
,
120
129
(
2012
).
13.
O. R.
Bilal
,
D.
Ballagi
, and
C.
Daraio
, “
Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions
,”
Phys. Rev. Appl.
10
,
054060
(
2018
).
14.
W.
Elmadih
,
D.
Chronopoulos
, and
J.
Zhu
, “
Metamaterials for simultaneous acoustic and elastic bandgaps
,”
Sci. Rep.
11
,
14635
(
2021
).
15.
A.
Hosseinkhani
,
D.
Younesian
,
M.
Ranjbar
, and
F.
Scarpa
, “
Enhancement of the vibro-acoustic performance of anti-tetra-chiral auxetic sandwich panels using topologically optimized local resonators
,”
Appl. Acoust.
177
,
107930
(
2021
).
16.
N.
Aravantinos-Zafiris
,
N.
Kanistras
, and
M. M.
Sigalas
, “
Acoustoelastic phononic metamaterial for isolation of sound and vibrations
,”
J. Appl. Phys.
129
,
105108
(
2021
).
17.
G.
Li
,
Y.
Chen
,
W.
Chen
,
J.
Liu
, and
H.
He
, “
Local resonance–Helmholtz lattices with simultaneous solid-borne elastic waves and air-borne sound waves attenuation performance
,”
Appl. Acoust.
186
,
108450
(
2022
).
18.
A.
Farouk
and
S.
Maged
, “
Acoustic metamaterial for simultaneous noise filteringand energy harvesting from ambient vibrations
,” in
2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC)
(
IEEE
,
2021
), pp.
149
154
.
19.
N. J.
Gerard
,
M.
Oudich
,
Z.
Xu
,
D.
Yao
,
H.
Cui
,
C. J.
Naify
,
A.
Ikei
,
C. A.
Rohde
,
X. R.
Zheng
, and
Y.
Jing
, “
Three-dimensional trampolinelike behavior in an ultralight elastic metamaterial
,”
Phys. Rev. Appl.
16
,
024015
(
2021
).
20.
V.
Ramakrishnan
and
M. J.
Frazier
, “
Acoustic metamaterials with independently tunable mass, damping, and stiffness
,”
J. Acoust. Soc. Am.
151
,
A96
(
2022
).
21.
A.
Alderson
and
K.
Alderson
, “
Auxetic materials
,”
Proc. Inst. Mech. Eng., Part G
221
,
565
575
(
2007
).
22.
R. H.
Baughman
,
J. M.
Shacklette
,
A. A.
Zakhidov
, and
S.
Stafström
, “
Negative Poisson's ratios as a common feature of cubic metals
,”
Nature
392
,
362
365
(
1998
).
23.
M. N.
Ali
and
I. U.
Rehman
, “
An auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; Development and in vitro mechanical analysis
,”
J. Mater. Sci.: Mater. Med.
22
,
2573
2581
(
2011
).
24.
X.
Ren
,
R.
Das
,
P.
Tran
,
T. D.
Ngo
, and
Y. M.
Xie
, “
Auxetic metamaterials and structures: A review
,”
Smart Mater. Struct.
27
,
023001
(
2018
).
25.
Z.
Yang
,
H.
Dai
,
N.
Chan
,
G.
Ma
, and
P.
Sheng
, “
Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime
,”
Appl. Phys. Lett.
96
,
041906
(
2010
).
26.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
, “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
,
756
(
2012
).
27.
Y.
Xiao
,
J.
Wen
, and
X.
Wen
, “
Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators
,”
J. Sound Vib.
331
,
5408
5423
(
2012
).
28.
F.
Ma
,
J. H.
Wu
,
M.
Huang
,
W.
Zhang
, and
S.
Zhang
, “
A purely flexible lightweight membrane-type acoustic metamaterial
,”
J. Phys. D: Appl. Phys.
48
,
175105
(
2015
).
29.
W.
Ding
,
D.
Tang
,
Y.
Liu
,
L.
Chen
, and
X.
Sun
, “
Compact and low crosstalk waveguide crossing using impedance matched metamaterial
,”
Appl. Phys. Lett.
96
,
111114
(
2010
).
30.
O. R.
Bilal
,
C. H.
Yee
,
J.
Rys
,
C.
Schumacher
, and
C.
Daraio
, “
Experimental realization of phonon demultiplexing in three-dimensions
,”
Appl. Phys. Lett.
118
,
091901
(
2021
).
31.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Acoustic metamaterials for new two-dimensional sonic devices
,”
New J. Phys.
9
,
323
(
2007
).
32.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
(
2007
).
33.
W.
Setyawan
and
S.
Curtarolo
, “
High-throughput electronic band structure calculations: Challenges and tools
,”
Comput. Mater. Sci.
49
,
299
312
(
2010
).

Supplementary Material

You do not currently have access to this content.