In last two decades, it has been theoretically and experimentally demonstrated that seismic metamaterials are capable of isolating seismic surface waves. Inertial amplification mechanisms with small mass have been proposed to design metamaterials to isolate elastic waves in rods, beams, and plates at low frequencies. In this Letter, we propose an alternative type of seismic metamaterial providing an ultra-low-frequency bandgap induced by inertial amplification. A unique kind of inertially amplified metamaterial is first conceived and designed. Its bandgap characteristics for flexural waves are then numerically and experimentally demonstrated. Finally, the embedded inertial amplification mechanism is introduced on a soil substrate to design a seismic metamaterial capable of strongly attenuating seismic surface waves around a frequency of 4 Hz. This work provides a promising alternative way to conceive seismic metamaterials to steer and control surface waves.

1.
F.
Meseguer
,
M.
Holgado
,
D.
Caballero
,
N.
Benaches
,
J.
Sánchez-Dehesa
,
C.
López
, and
J.
Llinares
, “
Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal
,”
Phys. Rev. B
59
,
12169
(
1999
).
2.
S.-H.
Kim
and
M. P.
Das
, “
Artificial seismic shadow zone by acoustic metamaterials
,”
Mod. Phys. Lett. B
27
,
1350140
(
2013
).
3.
S.
Brûlé
,
E.
Javelaud
,
S.
Enoch
, and
S.
Guenneau
, “
Experiments on seismic metamaterials: Molding surface waves
,”
Phys. Rev. Lett.
112
,
133901
(
2014
).
4.
M.
Miniaci
,
A.
Krushynska
,
F.
Bosia
, and
N. M.
Pugno
, “
Large scale mechanical metamaterials as seismic shields
,”
New J. Phys.
18
,
083041
(
2016
).
5.
A.
Colombi
,
P.
Roux
,
S.
Guenneau
,
P.
Gueguen
, and
R. V.
Craster
, “
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances
,”
Sci. Rep.
6
,
19238
(
2016
).
6.
Y.
Zeng
,
Y.
Xu
,
K.
Deng
,
Z.
Zeng
,
H.
Yang
,
M.
Muzamil
, and
Q.
Du
, “
Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space
,”
J. Appl. Phys.
123
,
214901
(
2018
).
7.
X.
Wang
,
S.
Wan
,
Y.
Nian
,
P.
Zhou
, and
Y.
Zhu
, “
Periodic in-filled pipes embedded in semi-infinite space as seismic metamaterials for filtering ultra-low-frequency surface waves
,”
Constr. Build. Mater.
313
,
125498
(
2021
).
8.
N.
Aravantinos-Zafiris
and
M.
Sigalas
, “
Large scale phononic metamaterials for seismic isolation
,”
J. Appl. Phys.
118
,
064901
(
2015
).
9.
A.
Colombi
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R. V.
Craster
, “
A seismic metamaterial: The resonant metawedge
,”
Sci. Rep.
6
,
27717
(
2016
).
10.
Y.
Achaoui
,
T.
Antonakakis
,
S.
Brûlé
,
R. V.
Craster
,
S.
Enoch
, and
S.
Guenneau
, “
Clamped seismic metamaterials: Ultra-low frequency stop bands
,”
New J. Phys.
19
,
063022
(
2017
).
11.
Y.
Zeng
,
S.-Y.
Zhang
,
H.-T.
Zhou
,
Y.-F.
Wang
,
L.
Cao
,
Y.
Zhu
,
Q.-J.
Du
,
B.
Assouar
, and
Y.-S.
Wang
, “
Broadband inverted T-shaped seismic metamaterial
,”
Mater. Des.
208
,
109906
(
2021
).
12.
Q.
Du
,
Y.
Zeng
,
G.
Huang
, and
H.
Yang
, “
Elastic metamaterial-based seismic shield for both Lamb and surface waves
,”
AIP Adv.
7
,
075015
(
2017
).
13.
Y.
Chen
,
Q.
Feng
,
F.
Scarpa
,
L.
Zuo
, and
X.
Zhuang
, “
Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps
,”
Mater. Des.
175
,
107813
(
2019
).
14.
W.
Liu
,
G. H.
Yoon
,
B.
Yi
,
Y.
Yang
, and
Y.
Chen
, “
Ultra-wide band gap metasurfaces for controlling seismic surface waves
,”
Extreme Mech. Lett.
41
,
101018
(
2020
).
15.
M.
Farhat
,
S.
Guenneau
, and
S.
Enoch
, “
Ultrabroadband elastic cloaking in thin plates
,”
Phys. Rev. Lett.
103
,
024301
(
2009
).
16.
M.
Kadic
,
T.
Bückmann
,
R.
Schittny
, and
M.
Wegener
, “
Metamaterials beyond electromagnetism
,”
Rep. Prog. Phys.
76
,
126501
(
2013
).
17.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y.
Zhu
,
Z.
Yang
,
C.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
18.
P.
Sheng
,
X. X.
Zhang
,
Z.
Liu
, and
C. T.
Chan
, “
Locally resonant sonic materials
,”
Physica B
338
,
201
205
(
2003
).
19.
Y.
Zeng
,
Y.
Xu
,
K.
Deng
,
P.
Peng
,
H.
Yang
,
M.
Muzamil
, and
Q.
Du
, “
A broadband seismic metamaterial plate with simple structure and easy realization
,”
J. Appl. Phys.
125
,
224901
(
2019
).
20.
Y.
Zeng
,
P.
Peng
,
Q.-J.
Du
,
Y.-S.
Wang
, and
B.
Assouar
, “
Subwavelength seismic metamaterial with an ultra-low frequency bandgap
,”
J. Appl. Phys.
128
,
014901
(
2020
).
21.
G.
Finocchio
,
O.
Casablanca
,
G.
Ricciardi
,
U.
Alibrandi
,
F.
Garescì
,
M.
Chiappini
, and
B.
Azzerboni
, “
Seismic metamaterials based on isochronous mechanical oscillators
,”
Appl. Phys. Lett.
104
,
191903
(
2014
).
22.
Y.-F.
Liu
,
J.-K.
Huang
,
Y.-G.
Li
, and
Z.-F.
Shi
, “
Trees as large-scale natural metamaterials for low-frequency vibration reduction
,”
Constr. Build. Mater.
199
,
737
745
(
2019
).
23.
Muhammad, C.
Lim
and
J.
Reddy
, “
Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium
,”
Eng. Struct.
188
,
440
451
(
2019
).
24.
Y.
Zeng
,
Y.
Xu
,
H.
Yang
,
M.
Muzamil
,
R.
Xu
,
K.
Deng
,
P.
Peng
, and
Q.
Du
, “
A Matryoshka-like seismic metamaterial with wide band-gap characteristics
,”
Int. J. Solids Struct.
185–186
,
334
341
(
2020
).
25.
X.
Pu
,
A.
Palermo
,
Z.
Cheng
,
Z.
Shi
, and
A.
Marzani
, “
Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves
,”
Int. J. Eng. Sci.
154
,
103347
(
2020
).
26.
S.
Krödel
,
N.
Thomé
, and
C.
Daraio
, “
Wide band-gap seismic metastructures
,”
Extreme Mech. Lett.
4
,
111
117
(
2015
).
27.
Y.
Zeng
,
L.
Cao
,
Y.
Zhu
,
Y.-F.
Wang
,
Q.-J.
Du
,
Y.-S.
Wang
, and
B.
Assouar
, “
Coupling the first and second attenuation zones in seismic metasurface
,”
Appl. Phys. Lett.
119
,
013501
(
2021
).
28.
C.
Yilmaz
,
G. M.
Hulbert
, and
N.
Kikuchi
, “
Phononic band gaps induced by inertial amplification in periodic media
,”
Phys. Rev. B
76
,
054309
(
2007
).
29.
C.
Yilmaz
and
G.
Hulbert
, “
Theory of phononic gaps induced by inertial amplification in finite structures
,”
Phys. Lett. A
374
,
3576
3584
(
2010
).
30.
C.
Yilmaz
and
N.
Kikuchi
, “
Analysis and design of passive low-pass filter-type vibration isolators considering stiffness and mass limitations
,”
J. Sound Vib.
293
,
171
195
(
2006
).
31.
C.
Liu
,
X.
Jing
, and
F.
Li
, “
Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure
,”
Int. J. Mech. Sci.
98
,
169
177
(
2015
).
32.
C.
Liu
,
X.
Jing
, and
Z.
Chen
, “
Band stop vibration suppression using a passive X-shape structured lever-type isolation system
,”
Mech. Syst. Signal Process.
68–69
,
342
353
(
2016
).
33.
N. M.
Frandsen
,
O. R.
Bilal
,
J. S.
Jensen
, and
M. I.
Hussein
, “
Inertial amplification of continuous structures: Large band gaps from small masses
,”
J. Appl. Phys.
119
,
124902
(
2016
).
34.
S.
Taniker
and
C.
Yilmaz
, “
Design, analysis and experimental investigation of three-dimensional structures with inertial amplification induced vibration stop bands
,”
Int. J. Solids Struct.
72
,
88
97
(
2015
).
35.
O.
Yuksel
and
C.
Yilmaz
, “
Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms
,”
Int. J. Solids Struct.
203
,
138
150
(
2020
).
36.
L.
Cao
,
Y.
Zhu
,
Y.
Xu
,
S.-W.
Fan
,
Z.
Yang
, and
B.
Assouar
, “
Elastic bound state in the continuum with perfect mode conversion
,”
J. Mech. Phys. Solids
154
,
104502
(
2021
).
37.
Y.
Zeng
,
L.
Cao
,
S.
Wan
,
T.
Guo
,
Y.-F.
Wang
,
Q.-J.
Du
,
B.
Assouar
, and
Y.-S.
Wang
, “
Seismic metamaterials: Generating low-frequency bandgaps induced by inertial amplification
,”
Int. J. Mech. Sci.
221
,
107224
(
2022
).
38.
J.
Li
and
S.
Li
, “
Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects
,”
Phys. Lett. A
382
,
241
247
(
2018
).
39.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
, “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
,
756
(
2012
).
40.
J.
Mei
,
X.
Zhang
, and
Y.
Wu
, “
Ultrathin metasurface with high absorptance for waterborne sound
,”
J. Appl. Phys.
123
,
091710
(
2018
).
41.
Y.
Ding
,
Z.
Liu
,
C.
Qiu
, and
J.
Shi
, “
Metamaterial with simultaneously negative bulk modulus and mass density
,”
Phys. Rev. Lett.
99
,
093904
(
2007
).
42.
Y.
Wang
,
C.
Zhang
,
W.
Chen
,
Z.
Li
,
M. V.
Golub
, and
S. I.
Fomenko
, “
Precise and target-oriented control of the low-frequency Lamb wave bandgaps
,”
J. Sound Vib.
511
,
116367
(
2021
).
43.
Y.-F.
Wang
,
J.-W.
Liang
,
A.-L.
Chen
,
Y.-S.
Wang
, and
V.
Laude
, “
Wave propagation in one-dimensional fluid-saturated porous metamaterials
,”
Phys. Rev. B
99
,
134304
(
2019
).
44.
R.
Yang
,
W.
Zhu
, and
J.
Li
, “
Realization of ‘trapped rainbow’ in 1D slab waveguide with surface dispersion engineering
,”
Opt. Express
23
,
6326
6335
(
2015
).
45.
R.
Cai
,
Y.
Jin
,
T.
Rabczuk
,
X.
Zhuang
, and
B.
Djafari-Rouhani
, “
Propagation and attenuation of Rayleigh and pseudo surface waves in viscoelastic metamaterials
,”
J. Appl. Phys.
129
,
124903
(
2021
).
46.
B.
Graczykowski
,
F.
Alzina
,
J.
Gomis-Bresco
, and
C.
Sotomayor Torres
, “
Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals
,”
J. Appl. Phys.
119
,
025308
(
2016
).
You do not currently have access to this content.